Showing 12 open source projects for "image processing framework"

View related business solutions
  • Ship AI Apps Faster with Vertex AI Icon
    Ship AI Apps Faster with Vertex AI

    Go from idea to deployed AI app without managing infrastructure. Vertex AI offers one platform for the entire AI development lifecycle.

    Ship AI apps and features faster with Vertex AI—your end-to-end AI platform. Access Gemini 3 and 200+ foundation models, fine-tune for your needs, and deploy with enterprise-grade MLOps. Build chatbots, agents, or custom models. New customers get $300 in free credit.
    Try Vertex AI Free
  • Deploy Apps in Seconds with Cloud Run Icon
    Deploy Apps in Seconds with Cloud Run

    Host and run your applications without the need to manage infrastructure. Scales up from and down to zero automatically.

    Cloud Run is the fastest way to deploy containerized apps. Push your code in Go, Python, Node.js, Java, or any language and Cloud Run builds and deploys it automatically. Get fast autoscaling, pay only when your code runs, and skip the infrastructure headaches. Two million requests free per month. And new customers get $300 in free credit.
    Try Cloud Run Free
  • 1
    SageMaker Spark Container

    SageMaker Spark Container

    Docker image used to run data processing workloads

    ...The SageMaker Spark Container is a Docker image used to run batch data processing workloads on Amazon SageMaker using the Apache Spark framework. The container images in this repository are used to build the pre-built container images that are used when running Spark jobs on Amazon SageMaker using the SageMaker Python SDK. The pre-built images are available in the Amazon Elastic Container Registry (Amazon ECR), and this repository serves as a reference for those wishing to build their own customized Spark containers for use in Amazon SageMaker.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 2
    Bytewax

    Bytewax

    Python Stream Processing

    Bytewax is a Python framework and Rust distributed processing engine that uses a dataflow computational model to provide parallelizable stream processing and event processing capabilities similar to Flink, Spark, and Kafka Streams. You can use Bytewax for a variety of workloads from moving data à la Kafka Connect style all the way to advanced online machine learning workloads.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 3
    Pathway

    Pathway

    Python ETL framework for stream processing, real-time analytics, LLM

    ...Unlike traditional batch processing frameworks, Pathway continuously updates the results of your data logic as new events arrive, functioning more like a database that reacts in real-time. It supports Python, integrates with modern data tools, and offers a deterministic dataflow model to ensure reproducibility and correctness.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 4
    Acl

    Acl

    A powerful server and network library, including coroutine

    The Acl (Advanced C/C++ Library) project a is powerful multi-platform network communication library and service framework, supporting LINUX, WIN32, Solaris, FreeBSD, MacOS, AndroidOS, iOS. Many applications written by Acl run on these devices with Linux, Windows, iPhone and Android and serve billions of users. There are some important modules in Acl project, including network communcation, server framework, application protocols, multiple coders, etc. The common protocols such as...
    Downloads: 2 This Week
    Last Update:
    See Project
  • MongoDB Atlas runs apps anywhere Icon
    MongoDB Atlas runs apps anywhere

    Deploy in 115+ regions with the modern database for every enterprise.

    MongoDB Atlas gives you the freedom to build and run modern applications anywhere—across AWS, Azure, and Google Cloud. With global availability in over 115 regions, Atlas lets you deploy close to your users, meet compliance needs, and scale with confidence across any geography.
    Start Free
  • 5
    Lithops

    Lithops

    A multi-cloud framework for big data analytics

    Lithops is an open-source serverless computing framework that enables transparent execution of Python functions across multiple cloud providers and on-prem infrastructure. It abstracts cloud providers like IBM Cloud, AWS, Azure, and Google Cloud into a unified interface and turns your Python functions into scalable, event-driven workloads. Lithops is ideal for data processing, ML inference, and embarrassingly parallel workloads, giving you the power of FaaS (Function-as-a-Service) without vendor lock-in. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 6
    CocoIndex

    CocoIndex

    ETL framework to index data for AI, such as RAG

    CocoIndex is an open-source framework designed for building powerful, local-first semantic search systems. It lets users index and retrieve content based on meaning rather than keywords, making it ideal for modern AI-based search applications. CocoIndex leverages vector embeddings and integrates with various models and frameworks, including OpenAI and Hugging Face, to provide high-quality semantic understanding. It’s built for transparency, ease of use, and local control over your search...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 7
    Fondant

    Fondant

    Production-ready data processing made easy and shareable

    Fondant is a modular, pipeline-based framework designed to simplify the preparation of large-scale datasets for training machine learning models, especially foundation models. It offers an end-to-end system for ingesting raw data, applying transformations, filtering, and formatting outputs—all while remaining scalable and traceable. Fondant is designed with reproducibility in mind and supports containerized steps using Docker, making it easy to share and reuse data processing components. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 8
    Benthos

    Benthos

    Fancy stream processing made operationally mundane

    Benthos is a high performance and resilient stream processor, able to connect various sources and sinks in a range of brokering patterns and perform hydration, enrichments, transformations and filters on payloads. It comes with a powerful mapping language, is easy to deploy and monitor, and ready to drop into your pipeline either as a static binary, docker image, or serverless function, making it cloud native as heck. Delivery guarantees can be a dodgy subject. Benthos processes and...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 9
    Pyper

    Pyper

    Concurrent Python made simple

    Pyper is a Python-native orchestration and scheduling framework designed for modern data workflows, machine learning pipelines, and any task that benefits from a lightweight DAG-based execution engine. Unlike heavier platforms like Airflow, Pyper aims to remain lean, modular, and developer-friendly, embracing Pythonic conventions and minimizing boilerplate. It focuses on local development ergonomics and seamless transition to production environments, making it ideal for small teams and...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Cut Data Warehouse Costs up to 54% with BigQuery Icon
    Cut Data Warehouse Costs up to 54% with BigQuery

    Migrate from Snowflake, Databricks, or Redshift with free migration tools. Exabyte scale without the Exabyte price.

    BigQuery delivers up to 54% lower TCO than cloud alternatives. Migrate from legacy or competing warehouses using free BigQuery Migration Service with automated SQL translation. Get serverless scale with no infrastructure to manage, compressed storage, and flexible pricing—pay per query or commit for deeper discounts. New customers get $300 in free credit.
    Try BigQuery Free
  • 10
    Amadeus

    Amadeus

    Harmonious distributed data analysis in Rust

    Amadeus is a high-performance, distributed data processing framework written in Rust, designed to offer an ergonomic and safe alternative to tools like Apache Spark. It provides both streaming and batch capabilities, allowing users to work with real-time and historical data at scale. Thanks to Rust’s memory safety and zero-cost abstractions, Amadeus delivers performance gains while reducing the complexity and bugs common in large-scale data pipelines.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 11
    DSPatch

    DSPatch

    The Refreshingly Simple C++ Dataflow Framework

    Webite: http://flowbasedprogramming.com DSPatch, pronounced "dispatch", is a powerful C++ dataflow framework. DSPatch is not limited to any particular domain or data type, from reactive programming to stream processing, DSPatch's generic, object-oriented API allows you to create virtually any dataflow system imaginable. *See also:* DSPatcher ( https://github.com/MarcusTomlinson/DSPatcher ): A cross-platform graphical tool for building DSPatch circuits.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 12
    Wally

    Wally

    Distributed Stream Processing

    Wally is a fast-stream-processing framework. Wally makes it easy to react to data in real-time. By eliminating infrastructure complexity, going from prototype to production has never been simpler. When we set out to build Wally, we had several high-level goals in mind. Create a dependable and resilient distributed computing framework. Take care of the complexities of distributed computing "plumbing," allowing developers to focus on their business logic.
    Downloads: 1 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • Next
MongoDB Logo MongoDB
Gen AI apps are built with MongoDB Atlas
Atlas offers built-in vector search and global availability across 125+ regions. Start building AI apps faster, all in one place.
Try Free →