Showing 7 open source projects for "batch"

View related business solutions
  • Easily Host LLMs and Web Apps on Cloud Run Icon
    Easily Host LLMs and Web Apps on Cloud Run

    Run everything from popular models with on-demand NVIDIA L4 GPUs to web apps without infrastructure management.

    Run frontend and backend services, batch jobs, host LLMs, and queue processing workloads without the need to manage infrastructure. Cloud Run gives you on-demand GPU access for hosting LLMs and running real-time AI—with 5-second cold starts and automatic scale-to-zero so you only pay for actual usage. New customers get $300 in free credit to start.
    Try Cloud Run Free
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • 1
    Pathway

    Pathway

    Python ETL framework for stream processing, real-time analytics, LLM

    ...Pathway is especially well-suited for scenarios like financial analytics, IoT, fraud detection, and logistics, where high-velocity and continuously changing data is the norm. Unlike traditional batch processing frameworks, Pathway continuously updates the results of your data logic as new events arrive, functioning more like a database that reacts in real-time. It supports Python, integrates with modern data tools, and offers a deterministic dataflow model to ensure reproducibility and correctness.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 2
    Best-of Python

    Best-of Python

    A ranked list of awesome Python open-source libraries

    ...Correctly generate plurals, ordinals, indefinite articles; convert numbers. Libraries for loading, collecting, and extracting data from a variety of data sources and formats. Libraries for data batch- and stream-processing, workflow automation, job scheduling, and other data pipeline tasks.
    Downloads: 5 This Week
    Last Update:
    See Project
  • 3
    Arroyo

    Arroyo

    Distributed stream processing engine in Rust

    Arroyo is a distributed stream processing engine written in Rust, designed to efficiently perform stateful computations on streams of data. Unlike traditional batch processing, streaming engines can operate on both bounded and unbounded sources, emitting results as soon as they are available.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 4
    SageMaker Spark Container

    SageMaker Spark Container

    Docker image used to run data processing workloads

    ...It also supports a rich set of higher-level tools including Spark SQL for SQL and DataFrames, MLlib for machine learning, GraphX for graph processing, and Structured Streaming for stream processing. The SageMaker Spark Container is a Docker image used to run batch data processing workloads on Amazon SageMaker using the Apache Spark framework. The container images in this repository are used to build the pre-built container images that are used when running Spark jobs on Amazon SageMaker using the SageMaker Python SDK. The pre-built images are available in the Amazon Elastic Container Registry (Amazon ECR), and this repository serves as a reference for those wishing to build their own customized Spark containers for use in Amazon SageMaker.
    Downloads: 0 This Week
    Last Update:
    See Project
  • $300 in Free Credit for Your Google Cloud Projects Icon
    $300 in Free Credit for Your Google Cloud Projects

    Build, test, and explore on Google Cloud with $300 in free credit. No hidden charges. No surprise bills.

    Launch your next project with $300 in free Google Cloud credit—no hidden charges. Test, build, and deploy without risk. Use your credit across the Google Cloud platform to find what works best for your needs. After your credits are used, continue building with free monthly usage products. Only pay when you're ready to scale. Sign up in minutes and start exploring.
    Start Free Trial
  • 5
    Amadeus

    Amadeus

    Harmonious distributed data analysis in Rust

    Amadeus is a high-performance, distributed data processing framework written in Rust, designed to offer an ergonomic and safe alternative to tools like Apache Spark. It provides both streaming and batch capabilities, allowing users to work with real-time and historical data at scale. Thanks to Rust’s memory safety and zero-cost abstractions, Amadeus delivers performance gains while reducing the complexity and bugs common in large-scale data pipelines. It emphasizes developer productivity through a fluent, expressive API and makes it easier to build composable and reliable data transformation pipelines without sacrificing speed or safety.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 6
    Cosmos DB Spark

    Cosmos DB Spark

    Apache Spark Connector for Azure Cosmos DB

    ...The connector allows you to easily read to and write from Azure Cosmos DB via Apache Spark DataFrames in Python and Scala. It also allows you to easily create a lambda architecture for batch-processing, stream-processing, and a serving layer while being globally replicated and minimizing the latency involved in working with big data.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 7
    Dataflow Java SDK

    Dataflow Java SDK

    Google Cloud Dataflow provides a simple, powerful model

    The Dataflow Java SDK is the open-source Java library that powers Apache Beam pipelines for Google Cloud Dataflow, a serverless and scalable platform for processing large datasets in both batch and stream modes. This SDK allows developers to write Beam-based pipelines in Java and execute them on Dataflow, taking advantage of features like autoscaling, dynamic work rebalancing, and fault-tolerant distributed processing. While it has been mostly succeeded by the unified Beam SDKs, it remains relevant for legacy systems and offers insight into the underlying mechanisms that power scalable data workflows on Google Cloud.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • Next
MongoDB Logo MongoDB