Showing 16 open source projects for "raspberry-gpio-python"

View related business solutions
  • MongoDB Atlas runs apps anywhere Icon
    MongoDB Atlas runs apps anywhere

    Deploy in 115+ regions with the modern database for every enterprise.

    MongoDB Atlas gives you the freedom to build and run modern applications anywhere—across AWS, Azure, and Google Cloud. With global availability in over 115 regions, Atlas lets you deploy close to your users, meet compliance needs, and scale with confidence across any geography.
    Start Free
  • Keep company data safe with Chrome Enterprise Icon
    Keep company data safe with Chrome Enterprise

    Protect your business with AI policies and data loss prevention in the browser

    Make AI work your way with Chrome Enterprise. Block unapproved sites and set custom data controls that align with your company's policies.
    Download Chrome
  • 1
    Best-of Python

    Best-of Python

    A ranked list of awesome Python open-source libraries

    ...If you like to add or update projects, feel free to open an issue, submit a pull request, or directly edit the projects.yaml. Contributions are very welcome! Ranked list of awesome python libraries for web development. Correctly generate plurals, ordinals, indefinite articles; convert numbers. Libraries for loading, collecting, and extracting data from a variety of data sources and formats. Libraries for data batch- and stream-processing, workflow automation, job scheduling, and other data pipeline tasks.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 2
    Bytewax

    Bytewax

    Python Stream Processing

    Bytewax is a Python framework that simplifies event and stream processing. Because Bytewax couples the stream and event processing capabilities of Flink, Spark, and Kafka Streams with the friendly and familiar interface of Python, you can re-use the Python libraries you already know and love. Connect data sources, run stateful transformations, and write to various downstream systems with built-in connectors or existing Python libraries.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 3
    SageMaker Spark Container

    SageMaker Spark Container

    Docker image used to run data processing workloads

    ...The container images in this repository are used to build the pre-built container images that are used when running Spark jobs on Amazon SageMaker using the SageMaker Python SDK. The pre-built images are available in the Amazon Elastic Container Registry (Amazon ECR), and this repository serves as a reference for those wishing to build their own customized Spark containers for use in Amazon SageMaker.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 4
    Pyper

    Pyper

    Concurrent Python made simple

    Pyper is a Python-native orchestration and scheduling framework designed for modern data workflows, machine learning pipelines, and any task that benefits from a lightweight DAG-based execution engine. Unlike heavier platforms like Airflow, Pyper aims to remain lean, modular, and developer-friendly, embracing Pythonic conventions and minimizing boilerplate.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • 5
    Lithops

    Lithops

    A multi-cloud framework for big data analytics

    Lithops is an open-source serverless computing framework that enables transparent execution of Python functions across multiple cloud providers and on-prem infrastructure. It abstracts cloud providers like IBM Cloud, AWS, Azure, and Google Cloud into a unified interface and turns your Python functions into scalable, event-driven workloads. Lithops is ideal for data processing, ML inference, and embarrassingly parallel workloads, giving you the power of FaaS (Function-as-a-Service) without vendor lock-in. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 6
    Pathway

    Pathway

    Python ETL framework for stream processing, real-time analytics, LLM

    ...Unlike traditional batch processing frameworks, Pathway continuously updates the results of your data logic as new events arrive, functioning more like a database that reacts in real-time. It supports Python, integrates with modern data tools, and offers a deterministic dataflow model to ensure reproducibility and correctness.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 7
    Fondant

    Fondant

    Production-ready data processing made easy and shareable

    Fondant is a modular, pipeline-based framework designed to simplify the preparation of large-scale datasets for training machine learning models, especially foundation models. It offers an end-to-end system for ingesting raw data, applying transformations, filtering, and formatting outputs—all while remaining scalable and traceable. Fondant is designed with reproducibility in mind and supports containerized steps using Docker, making it easy to share and reuse data processing components....
    Downloads: 0 This Week
    Last Update:
    See Project
  • 8
    CocoIndex

    CocoIndex

    ETL framework to index data for AI, such as RAG

    CocoIndex is an open-source framework designed for building powerful, local-first semantic search systems. It lets users index and retrieve content based on meaning rather than keywords, making it ideal for modern AI-based search applications. CocoIndex leverages vector embeddings and integrates with various models and frameworks, including OpenAI and Hugging Face, to provide high-quality semantic understanding. It’s built for transparency, ease of use, and local control over your search...
    Downloads: 4 This Week
    Last Update:
    See Project
  • 9
    Siddhi Core Libraries

    Siddhi Core Libraries

    Stream Processing and Complex Event Processing Engine

    ...Agile development experience with SQL-like query language and graphical drag-and-drop editor supporting event simulation. Lightweight runtime that can natively run on Kubernetes, Docker, VM, or bare metal, and embedded in any Java or Python application. Scalable, and highly available distributed event processing on Kubernetes, with NATS Streaming and Siddhi Kubernetes Operator.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Atera IT Autopilot Icon
    Atera IT Autopilot

    Ensure operational efficiency at any scale with 24/7 autonomous IT support.

    IT Autopilot takes the pressure off your team by handling first-tier support across the channels your end users already live in — email, chat, Slack, Teams, and your Customer Portal. It doesn’t just respond to end-user queries, issues, and crises — it solves them.
    Learn More
  • 10
    PULSAR

    PULSAR

    Distributed pub-sub messaging system

    ...Persistent message storage based on Apache BookKeeper. IO-level isolation between write and read operations. Flexible messaging models with high-level APIs for Java, Go, Python, C++, Node.js, WebSocket and C#.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 11
    text-dedup

    text-dedup

    All-in-one text de-duplication

    text-dedup is a Python library that enables efficient deduplication of large text corpora by using MinHash and other probabilistic techniques to detect near-duplicate content. This is especially useful for NLP tasks where duplicated training data can skew model performance. text-dedup scales to billions of documents and offers tools for chunking, hashing, and comparing text efficiently with low memory usage.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 12
    Padasip

    Padasip

    Python Adaptive Signal Processing

    Padasip (Python Adaptive Signal Processing) is a Python library tailored for adaptive filtering and online learning applications, particularly in signal processing and time series forecasting. It includes a variety of adaptive filter algorithms such as LMS, RLS, and their variants, offering real-time adaptation to changing environments. The library is lightweight, well-documented, and ideal for research, prototyping, or teaching purposes.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 13
    Wally

    Wally

    Distributed Stream Processing

    Wally is a fast-stream-processing framework. Wally makes it easy to react to data in real-time. By eliminating infrastructure complexity, going from prototype to production has never been simpler. When we set out to build Wally, we had several high-level goals in mind. Create a dependable and resilient distributed computing framework. Take care of the complexities of distributed computing "plumbing," allowing developers to focus on their business logic. Provide high-performance & low-latency...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 14
    Cosmos DB Spark

    Cosmos DB Spark

    Apache Spark Connector for Azure Cosmos DB

    Azure Cosmos DB Spark is the official connector for Azure CosmosDB and Apache Spark. The connector allows you to easily read to and write from Azure Cosmos DB via Apache Spark DataFrames in Python and Scala. It also allows you to easily create a lambda architecture for batch-processing, stream-processing, and a serving layer while being globally replicated and minimizing the latency involved in working with big data.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 15
    Sed.py is a python module to provide a easy way to do text stream processing. Just like the name of module, it likes to do the work that sed can do. But not in sed's way, it's in Python's way. To use this module, the knowledge of regexp is necessary.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 16
    StreamMine is a distributed event processing (streaming) infrastructure. You can create low-latency, fault-tolerant stream processing functionality with any stream-oriented operators that can be implemented in Python.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • Next