Showing 2 open source projects for "learning vector quantization"

View related business solutions
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • SIEM | API Security | Log Management Software Icon
    SIEM | API Security | Log Management Software

    AI-Powered Security and IT Operations Without Compromise.

    Built on the Graylog Platform, Graylog Security is the industry’s best-of-breed threat detection, investigation, and response (TDIR) solution. It simplifies analysts’ day-to-day cybersecurity activities with an unmatched workflow and user experience while simultaneously providing short- and long-term budget flexibility in the form of low total cost of ownership (TCO) that CISOs covet. With Graylog Security, security analysts can:
    Learn More
  • 1
    whisper.cpp

    whisper.cpp

    Port of OpenAI's Whisper model in C/C++

    whisper.cpp is a lightweight, C/C++ reimplementation of OpenAI’s Whisper automatic speech recognition (ASR) model—designed for efficient, standalone transcription without external dependencies. The entire high-level implementation of the model is contained in whisper.h and whisper.cpp. The rest of the code is part of the ggml machine learning library. The command downloads the base.en model converted to custom ggml format and runs the inference on all .wav samples in the folder samples. whisper.cpp supports integer quantization of the Whisper ggml models. Quantized models require less memory and disk space and depending on the hardware can be processed more efficiently.
    Downloads: 565 This Week
    Last Update:
    See Project
  • 2
    The SpeechBrain Toolkit

    The SpeechBrain Toolkit

    A PyTorch-based Speech Toolkit

    ...SpeechBrain supports state-of-the-art methods for end-to-end speech recognition, including models based on CTC, CTC+attention, transducers, transformers, and neural language models relying on recurrent neural networks and transformers. Speaker recognition is already deployed in a wide variety of realistic applications. SpeechBrain provides different models for speaker recognition, including X-vector, ECAPA-TDNN, PLDA, and contrastive learning. Spectral masking, spectral mapping, and time-domain enhancement are different methods already available within SpeechBrain. Separation methods such as Conv-TasNet, DualPath RNN, and SepFormer are implemented as well. SpeechBrain provides efficient and GPU-friendly speech augmentation pipelines and acoustic features extraction.
    Downloads: 1 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • Next