Showing 2 open source projects for "python raspberry pi"

View related business solutions
  • Resolve Support Tickets 2x Faster​ with ServoDesk Icon
    Resolve Support Tickets 2x Faster​ with ServoDesk

    Full access to Enterprise features. No credit card required.

    What if You Could Automate 90% of Your Repetitive Tasks in Under 30 Days? At ServoDesk, we help businesses like yours automate operations with AI, allowing you to cut service times in half and increase productivity by 25% - without hiring more staff.
    Try ServoDesk for free
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • 1
    Vosk Speech Recognition Toolkit

    Vosk Speech Recognition Toolkit

    Offline speech recognition API for Android, iOS, Raspberry Pi

    ...Vosk models are small (50 Mb) but provide continuous large vocabulary transcription, zero-latency response with streaming API, reconfigurable vocabulary and speaker identification. Speech recognition bindings are implemented for various programming languages like Python, Java, Node.JS, C#, C++, Rust, Go and others. Vosk supplies speech recognition for chatbots, smart home appliances, and virtual assistants. It can also create subtitles for movies, and transcription for lectures and interviews. Vosk scales from small devices like Raspberry Pi or Android smartphones to big clusters.
    Downloads: 65 This Week
    Last Update:
    See Project
  • 2
    whisper.cpp

    whisper.cpp

    Port of OpenAI's Whisper model in C/C++

    whisper.cpp is a lightweight, C/C++ reimplementation of OpenAI’s Whisper automatic speech recognition (ASR) model—designed for efficient, standalone transcription without external dependencies. The entire high-level implementation of the model is contained in whisper.h and whisper.cpp. The rest of the code is part of the ggml machine learning library. The command downloads the base.en model converted to custom ggml format and runs the inference on all .wav samples in the folder samples....
    Downloads: 504 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • Next