...The top level organizes many paper-specific directories across domains such as deep reinforcement learning, self-supervised vision, generative modeling, scientific ML, and program synthesis—for example BYOL, Perceiver/Perceiver IO, Enformer for genomics, MeshGraphNets for physics, RL Unplugged, Nowcasting for weather, and more. Each project folder typically includes its own README, scripts, and notebooks so you can run experiments or explore models in isolation, and many link to associated datasets or external environments like DeepMind Lab and StarCraft II. The codebase is primarily Jupyter Notebooks and Python, reflecting an emphasis on experimentation and pedagogy rather than production packaging.