Showing 303 open source projects for "python q learning"

View related business solutions
  • Gen AI apps are built with MongoDB Atlas Icon
    Gen AI apps are built with MongoDB Atlas

    Build gen AI apps with an all-in-one modern database: MongoDB Atlas

    MongoDB Atlas provides built-in vector search and a flexible document model so developers can build, scale, and run gen AI apps without stitching together multiple databases. From LLM integration to semantic search, Atlas simplifies your AI architecture—and it’s free to get started.
    Start Free
  • Repair-CRM Icon
    Repair-CRM

    For small companies that repair and maintenance customer machines

    All-In-One Solution with an Online Booking portal for automating scheduling & dispatching to ditch paperwork and improve the productivity of your technicians!
    Learn More
  • 1
    hloc

    hloc

    Visual localization made easy with hloc

    This is hloc, a modular toolbox for state-of-the-art 6-DoF visual localization. It implements Hierarchical Localization, leveraging image retrieval and feature matching, and is fast, accurate, and scalable. This codebase won the indoor/outdoor localization challenges at CVPR 2020 and ECCV 2020, in combination with SuperGlue, our graph neural network for feature matching. We provide step-by-step guides to localize with Aachen, InLoc, and to generate reference poses for your own data using...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 2
    Horovod

    Horovod

    Distributed training framework for TensorFlow, Keras, PyTorch, etc.

    Horovod was originally developed by Uber to make distributed deep learning fast and easy to use, bringing model training time down from days and weeks to hours and minutes. With Horovod, an existing training script can be scaled up to run on hundreds of GPUs in just a few lines of Python code. Horovod can be installed on-premise or run out-of-the-box in cloud platforms, including AWS, Azure, and Databricks.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 3
    fastMRI

    fastMRI

    A large open dataset + tools to speed up MRI scans using ML

    fastMRI is a large-scale collaborative research project by Facebook AI Research (FAIR) and NYU Langone Health that explores how deep learning can accelerate magnetic resonance imaging (MRI) acquisition without compromising image quality. By enabling reconstruction of high-fidelity MR images from significantly fewer measurements, fastMRI aims to make MRI scanning faster, cheaper, and more accessible in clinical settings. The repository provides an open-source PyTorch framework with data...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 4
    iJEPA

    iJEPA

    Official codebase for I-JEPA

    i-JEPA (Image Joint-Embedding Predictive Architecture) is a self-supervised learning framework that predicts missing high-level representations rather than reconstructing pixels. A context encoder sees visible regions of an image and predicts target embeddings for masked regions produced by a slowly updated target encoder, focusing learning on semantics instead of texture. This objective sidesteps generative pixel losses and avoids heavy negative sampling, producing features that transfer...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Automated RMM Tools | RMM Software Icon
    Automated RMM Tools | RMM Software

    Proactively monitor, manage, and support client networks with ConnectWise Automate

    Out-of-the-box scripts. Around-the-clock monitoring. Unmatched automation capabilities. Start doing more with less and exceed service delivery expectations.
    Learn More
  • 5
    DeepMind Research

    DeepMind Research

    Implementations and code to accompany DeepMind publications

    ...The codebase is primarily Jupyter Notebooks and Python, reflecting an emphasis on experimentation and pedagogy rather than production packaging.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 6
    AI-Agent-Host

    AI-Agent-Host

    The AI Agent Host is a module-based development environment.

    The AI Agent Host integrates several advanced technologies and offers a unique combination of features for the development of language model-driven applications. The AI Agent Host is a module-based environment designed to facilitate rapid experimentation and testing. It includes a docker-compose configuration with QuestDB, Grafana, Code-Server and Nginx. The AI Agent Host provides a seamless interface for managing and querying data, visualizing results, and coding in real-time. The AI...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 7
    MLPACK is a C++ machine learning library with emphasis on scalability, speed, and ease-of-use. Its aim is to make machine learning possible for novice users by means of a simple, consistent API, while simultaneously exploiting C++ language features to provide maximum performance and flexibility for expert users. * More info + downloads: https://mlpack.org * Git repo: https://github.com/mlpack/mlpack
    Downloads: 0 This Week
    Last Update:
    See Project
  • 8
    DIG

    DIG

    A library for graph deep learning research

    The key difference with current graph deep learning libraries, such as PyTorch Geometric (PyG) and Deep Graph Library (DGL), is that, while PyG and DGL support basic graph deep learning operations, DIG provides a unified testbed for higher level, research-oriented graph deep learning tasks, such as graph generation, self-supervised learning, explainability, 3D graphs, and graph out-of-distribution. If you are working or plan to work on research in graph deep learning, DIG enables you to...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 9
    smclarify

    smclarify

    Fairness aware machine learning. Bias detection and mitigation

    Fairness Aware Machine Learning. Bias detection and mitigation for datasets and models. A facet is column or feature that will be used to measure bias against. A facet can have value(s) that designates that sample as "sensitive". Bias detection and mitigation for datasets and models. The label is a column or feature which is the target for training a machine learning model. The label can have value(s) that designates that sample as having a "positive" outcome. A bias measure is a function...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Field Sales+ for MS Dynamics 365 and Salesforce Icon
    Field Sales+ for MS Dynamics 365 and Salesforce

    Maximize your sales performance on the go.

    Bring Dynamics 365 and Salesforce wherever you go with Resco’s solution. With powerful offline features and reliable data syncing, your team can access CRM data on mobile devices anytime, anywhere. This saves time, cuts errors, and speeds up customer visits.
    Learn More
  • 10
    Alpa

    Alpa

    Training and serving large-scale neural networks

    Alpa is a system for training and serving large-scale neural networks. Scaling neural networks to hundreds of billions of parameters has enabled dramatic breakthroughs such as GPT-3, but training and serving these large-scale neural networks require complicated distributed system techniques. Alpa aims to automate large-scale distributed training and serving with just a few lines of code.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 11
    AlphaZero.jl

    AlphaZero.jl

    A generic, simple and fast implementation of Deepmind's AlphaZero

    ...This makes them hardly accessible for students, researchers and hackers. Many simple Python implementations can be found on Github, but none of them is able to beat a reasonable baseline on games such as Othello or Connect Four. As an illustration, the benchmark in the README of the most popular of them only features a random baseline, along with a greedy baseline that does not appear to be significantly stronger.
    Downloads: 17 This Week
    Last Update:
    See Project
  • 12
    Petastorm

    Petastorm

    Petastorm library enables single machine or distributed training

    ...Petastorm supports popular Python-based machine learning (ML) frameworks such as Tensorflow, PyTorch, and PySpark. It can also be used from pure Python code. A dataset created using Petastorm is stored in Apache Parquet format. On top of a Parquet schema, petastorm also stores higher-level schema information that makes multidimensional arrays into a native part of a petastorm dataset.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 13
    UnionML

    UnionML

    Build and deploy machine learning microservices

    Creating ML apps should be simple and frictionless. UnionML is an open-source Python framework built on top of Flyte™, unifying the complex ecosystem of ML tools into a single interface. Combine the tools that you love using a simple, standardized API so you can stop writing so much boilerplate and focus on what matters: the data and the models that learn from them. Fit the rich ecosystem of tools and frameworks into a common protocol for machine learning.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 14

    Proteus Model Builder

    GUI for training of neural network models for GuitarML Proteus

    ...GuitarML's work on Proteus, NeuralPi and Proteusboard (hardware) is amazing. https://github.com/GuitarML Yet, it is not easy to wrap your head around if you are not familiar with programming, AI, machine learning, neuronal networks. So, Keith Bloemer a.k.a. GuitarML set up a Google Colab script to give people the Opportunity to train their own models online. Still, I thought that things could be easier, and I wanted a faster way to work with the python scripts. So I automated some things on my Windows 10 machine. I assume, that most musicians use this OS. ...
    Downloads: 6 This Week
    Last Update:
    See Project
  • 15
    Neural Network Visualization

    Neural Network Visualization

    Project for processing neural networks and rendering to gain insights

    nn_vis is a minimalist visualization tool for neural networks written in Python using OpenGL and Pygame. It provides an interactive, graphical representation of how data flows through neural network layers, offering a unique educational experience for those new to deep learning or looking to explain it visually. By animating input, weights, activations, and outputs, the tool demystifies neural network operations and helps users intuitively grasp complex concepts.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 16
    DeepCTR

    DeepCTR

    Package of deep-learning based CTR models

    DeepCTR is a Easy-to-use,Modular and Extendible package of deep-learning based CTR models along with lots of core components layers which can be used to easily build custom models. You can use any complex model with model.fit(), and model.predict(). Provide tf.keras.Model like interface for quick experiment. Provide tensorflow estimator interface for large scale data and distributed training. It is compatible with both tf 1.x and tf 2.x. With the great success of deep learning,DNN-based...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 17
    NeuMan

    NeuMan

    Neural Human Radiance Field from a Single Video (ECCV 2022)

    NeuMan is a reference implementation that reconstructs both an animatable human and its background scene from a single monocular video using neural radiance fields. It supports novel view and novel pose synthesis, enabling compositional results like transferring reconstructed humans into new scenes. The pipeline separates human/body and environment, learning consistent geometry and appearance to support animation. Demos showcase sequences such as dance and handshake, and the code provides...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 18
    Twinify

    Twinify

    Privacy-preserving generation of a synthetic twin to a data set

    twinify is a software package for the privacy-preserving generation of a synthetic twin to a given sensitive tabular data set. On a high level, twinify follows the differentially private data-sharing process introduced by Jälkö et al.. Depending on the nature of your data, twinify implements either the NAPSU-MQ approach described by Räisä et al. or finds an approximate parameter posterior for any probabilistic model you formulated using differentially private variational inference (DPVI)....
    Downloads: 0 This Week
    Last Update:
    See Project
  • 19
    DeepCTR-Torch

    DeepCTR-Torch

    Easy-to-use,Modular and Extendible package of deep-learning models

    DeepCTR-Torch is an easy-to-use, Modular and Extendible package of deep-learning-based CTR models along with lots of core components layers that can be used to build your own custom model easily.It is compatible with PyTorch.You can use any complex model with model.fit() and model.predict(). With the great success of deep learning, DNN-based techniques have been widely used in CTR estimation tasks. The data in the CTR estimation task usually includes high sparse,high cardinality categorical...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 20
    Gym

    Gym

    Toolkit for developing and comparing reinforcement learning algorithms

    Gym by OpenAI is a toolkit for developing and comparing reinforcement learning algorithms. It supports teaching agents, everything from walking to playing games like Pong or Pinball. Open source interface to reinforce learning tasks. The gym library provides an easy-to-use suite of reinforcement learning tasks. Gym provides the environment, you provide the algorithm. You can write your agent using your existing numerical computation library, such as TensorFlow or Theano. It makes no...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 21
    GFPGAN

    GFPGAN

    GFPGAN aims at developing Practical Algorithms

    GFPGAN aims at developing Practical Algorithms for Real-world Face Restoration. Colab Demo for GFPGAN; (Another Colab Demo for the original paper model) Online demo: Huggingface (return only the cropped face) Online demo: Replicate.ai (may need to sign in, return the whole image). Online demo: Baseten.co (backed by GPU, returns the whole image). We provide a clean version of GFPGAN, which can run without CUDA extensions. So that it can run in Windows or on CPU mode. GFPGAN aims at developing...
    Downloads: 53 This Week
    Last Update:
    See Project
  • 22
    PyTorch Transfer-Learning-Library

    PyTorch Transfer-Learning-Library

    Transfer Learning Library for Domain Adaptation, Task Adaptation, etc.

    TLlib is an open-source and well-documented library for Transfer Learning. It is based on pure PyTorch with high performance and friendly API. Our code is pythonic, and the design is consistent with torchvision. You can easily develop new algorithms or readily apply existing algorithms. We appreciate all contributions. If you are planning to contribute back bug-fixes, please do so without any further discussion. If you plan to contribute new features, utility functions or extensions, please...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 23
    BEVFormer

    BEVFormer

    Implementation of BEVFormer, a camera-only framework

    3D visual perception tasks, including 3D detection and map segmentation based on multi-camera images, are essential for autonomous driving systems. In this work, we present a new framework termed BEVFormer, which learns unified BEV representations with spatiotemporal transformers to support multiple autonomous driving perception tasks. In a nutshell, BEVFormer exploits both spatial and temporal information by interacting with spatial and temporal space through predefined grid-shaped BEV...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 24
    LeetCode Python

    LeetCode Python

    LeetCode Solutions: A Record of My Problem Solving Journey

    This repository is a comprehensive personal journal of LeetCode problem-solving journey. It includes detailed solutions with code, algorithm insights, data structure summaries, Anki flashcards, daily challenge logs, and future planning sections.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 25
    Fairseq

    Fairseq

    Facebook AI Research Sequence-to-Sequence Toolkit written in Python

    Fairseq(-py) is a sequence modeling toolkit that allows researchers and developers to train custom models for translation, summarization, language modeling and other text generation tasks. We provide reference implementations of various sequence modeling papers. Recent work by Microsoft and Google has shown that data parallel training can be made significantly more efficient by sharding the model parameters and optimizer state across data parallel workers. These ideas are encapsulated in the...
    Downloads: 1 This Week
    Last Update:
    See Project