Showing 3 open source projects for "model train design"

View related business solutions
  • Atera all-in-one platform IT management software with AI agents Icon
    Atera all-in-one platform IT management software with AI agents

    Ideal for internal IT departments or managed service providers (MSPs)

    Atera’s AI agents don’t just assist, they act. From detection to resolution, they handle incidents and requests instantly, taking your IT management from automated to autonomous.
    Learn More
  • Next-Gen Encryption for Post-Quantum Security | CLEAR by Quantum Knight Icon
    Next-Gen Encryption for Post-Quantum Security | CLEAR by Quantum Knight

    Lock Down Any Resource, Anywhere, Anytime

    CLEAR by Quantum Knight is a FIPS-140-3 validated encryption SDK engineered for enterprises requiring top-tier security. Offering robust post-quantum cryptography, CLEAR secures files, streaming media, databases, and networks with ease across over 30 modern platforms. Its compact design, smaller than a single smartphone image, ensures maximum efficiency and low energy consumption.
    Learn More
  • 1
    SageMaker Spark

    SageMaker Spark

    A Spark library for Amazon SageMaker

    ...With SageMaker Spark you construct Spark ML Pipelines using Amazon SageMaker stages. These pipelines interleave native Spark ML stages and stages that interact with SageMaker training and model hosting. With SageMaker Spark, you can train on Amazon SageMaker from Spark DataFrames using Amazon-provided ML algorithms like K-Means clustering or XGBoost, and make predictions on DataFrames against SageMaker endpoints hosting your trained models, and, if you have your own ML algorithms built into SageMaker compatible Docker containers, you can use SageMaker Spark to train and infer on DataFrames with your own algorithms -- all at Spark scale. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 2
    Synapse Machine Learning

    Synapse Machine Learning

    Simple and distributed Machine Learning

    SynapseML (previously MMLSpark) is an open source library to simplify the creation of scalable machine learning pipelines. SynapseML builds on Apache Spark and SparkML to enable new kinds of machine learning, analytics, and model deployment workflows. SynapseML adds many deep learning and data science tools to the Spark ecosystem, including seamless integration of Spark Machine Learning pipelines with the Open Neural Network Exchange (ONNX), LightGBM, The Cognitive Services, Vowpal Wabbit,...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 3
    Scalaz

    Scalaz

    Principled Functional Programming in Scala

    ...It implements classic abstractions such as Functor, Applicative, Monad, Monoid, Foldable, and Traverse, along with powerful transformers (ReaderT, StateT, WriterT, OptionT, and more) to structure effects. The library offers rich data structures—\/ (disjunction), Validation, NonEmptyList, IList, and Free—that help model errors, invariants, and interpretable programs. Its type class–oriented design lets you write generic algorithms over capabilities rather than concrete types, improving reuse and testability. Scalaz also contributes optics, equality/ordering abstractions, and lawful instances with property-based tests to ensure algebraic laws hold. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • Next