Showing 8 open source projects for "parallel computing datamaning"

View related business solutions
  • 99.99% Uptime for MySQL and PostgreSQL on Google Cloud Icon
    99.99% Uptime for MySQL and PostgreSQL on Google Cloud

    Enterprise Plus edition delivers sub-second maintenance downtime and 2x read/write performance. Built for critical apps.

    Cloud SQL Enterprise Plus gives you a 99.99% availability SLA with near-zero downtime maintenance—typically under 10 seconds. Get 2x better read/write performance, intelligent data caching, and 35 days of point-in-time recovery. Supports MySQL, PostgreSQL, and SQL Server with built-in vector search for gen AI apps. New customers get $300 in free credit.
    Try Cloud SQL Free
  • AI-generated apps that pass security review Icon
    AI-generated apps that pass security review

    Stop waiting on engineering. Build production-ready internal tools with AI—on your company data, in your cloud.

    Retool lets you generate dashboards, admin panels, and workflows directly on your data. Type something like “Build me a revenue dashboard on my Stripe data” and get a working app with security, permissions, and compliance built in from day one. Whether on our cloud or self-hosted, create the internal software your team needs without compromising enterprise standards or control.
    Try Retool free
  • 1
    PyOpenCL

    PyOpenCL

    OpenCL integration for Python, plus shiny features

    PyOpenCL is a Python wrapper for the OpenCL framework, providing seamless access to parallel computing on CPUs, GPUs, and other accelerators. It enables developers to harness the full power of heterogeneous computing directly from Python, combining Python’s ease of use with the performance benefits of OpenCL. PyOpenCL also includes convenient features for managing memory, compiling kernels, and interfacing with NumPy, making it a preferred choice in scientific computing, data analysis, and machine learning workflows that demand acceleration.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 2
    Ray

    Ray

    A unified framework for scalable computing

    Modern workloads like deep learning and hyperparameter tuning are compute-intensive and require distributed or parallel execution. Ray makes it effortless to parallelize single machine code — go from a single CPU to multi-core, multi-GPU or multi-node with minimal code changes. Accelerate your PyTorch and Tensorflow workload with a more resource-efficient and flexible distributed execution framework powered by Ray. Accelerate your hyperparameter search workloads with Ray Tune. Find the best...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 3
    PyCNN

    PyCNN

    Image Processing with Cellular Neural Networks in Python

    Image Processing with Cellular Neural Networks in Python. Cellular Neural Networks (CNN) are a parallel computing paradigm that was first proposed in 1988. Cellular neural networks are similar to neural networks, with the difference that communication is allowed only between neighboring units. Image Processing is one of its applications. CNN processors were designed to perform image processing; specifically, the original application of CNN processors was to perform real-time ultra-high frame-rate (>10,000 frame/s) processing unachievable by digital processors.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 4
    AWK~plus is the next generation script practice environment. The AWK Language specifications and a main extension of GNU GAWK. Combination of Dynamic and Static typing. Parallel computing that a lock is free, and is thread safe at a language level.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Enterprise-grade ITSM, for every business Icon
    Enterprise-grade ITSM, for every business

    Give your IT, operations, and business teams the ability to deliver exceptional services—without the complexity.

    Freshservice is an intuitive, AI-powered platform that helps IT, operations, and business teams deliver exceptional service without the usual complexity. Automate repetitive tasks, resolve issues faster, and provide seamless support across the organization. From managing incidents and assets to driving smarter decisions, Freshservice makes it easy to stay efficient and scale with confidence.
    Try it Free
  • 5
    cca-forum
    Cca-forum unifies the Common Component Architecture tools and tutorial. It includes the CCA specifications, the Ccaffeine framework for HPC, and related tools. These support multilanguage scientific and parallel computing.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 6
    Distributed Parallel Programming for Python! This package builds on traditional Python by enabling users to write distributed, parallel programs based on MPI message passing primitives. General python objects can be messaged between processors. Ru
    Downloads: 0 This Week
    Last Update:
    See Project
  • 7
    PyMW is a Python module for parallel master-worker computing in a variety of environments. With the PyMW module, users can write a single program that scales from multicore machines to global computing platforms.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 8
    Python Integrated Parallel Programming EnviRonment (PIPPER), Python pre-parser that is designed to manage a pipeline, written in Python. It enables automated parallelization of loops. Think of it like OpenMP for Python, but it works in a computer cluster
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • Next
MongoDB Logo MongoDB
Gen AI apps are built with MongoDB Atlas
Atlas offers built-in vector search and global availability across 125+ regions. Start building AI apps faster, all in one place.