Showing 40 open source projects for "numpy-mkl"

View related business solutions
  • 99.99% Uptime for MySQL and PostgreSQL on Google Cloud Icon
    99.99% Uptime for MySQL and PostgreSQL on Google Cloud

    Enterprise Plus edition delivers sub-second maintenance downtime and 2x read/write performance. Built for critical apps.

    Cloud SQL Enterprise Plus gives you a 99.99% availability SLA with near-zero downtime maintenance—typically under 10 seconds. Get 2x better read/write performance, intelligent data caching, and 35 days of point-in-time recovery. Supports MySQL, PostgreSQL, and SQL Server with built-in vector search for gen AI apps. New customers get $300 in free credit.
    Try Cloud SQL Free
  • AI-generated apps that pass security review Icon
    AI-generated apps that pass security review

    Stop waiting on engineering. Build production-ready internal tools with AI—on your company data, in your cloud.

    Retool lets you generate dashboards, admin panels, and workflows directly on your data. Type something like “Build me a revenue dashboard on my Stripe data” and get a working app with security, permissions, and compliance built in from day one. Whether on our cloud or self-hosted, create the internal software your team needs without compromising enterprise standards or control.
    Try Retool free
  • 1
    Numba

    Numba

    NumPy aware dynamic Python compiler using LLVM

    ...Just apply one of the Numba decorators to your Python function, and Numba does the rest. Numba is designed to be used with NumPy arrays and functions. Numba generates specialized code for different array data types and layouts to optimize performance. Special decorators can create universal functions that broadcast over NumPy arrays just like NumPy functions do. Numba also works great with Jupyter notebooks for interactive computing, and with distributed execution frameworks, like Dask and Spark.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 2
    CuPy

    CuPy

    A NumPy-compatible array library accelerated by CUDA

    ...CuPy is highly compatible with NumPy, serving as a drop-in replacement in most cases. CuPy is very easy to install through pip or through precompiled binary packages called wheels for recommended environments. It also makes writing a custom CUDA kernel very easy, requiring only a small code snippet of C++.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 3
    SciPy

    SciPy

    SciPy library main repository

    ...The SciPy library contains many of the user-friendly and efficient numerical routines, including those for numerical integration, interpolation, and optimization. SciPy is built to work with NumPy, a software that provides convenient and fast N-dimensional array manipulation. Both SciPy and NumPy run on all popular operating systems, are fast and easy to install, and are powerful yet easy to use. They’re currently depended upon by numerous leading scientists and engineers all over the world. Try them for yourself!
    Downloads: 9 This Week
    Last Update:
    See Project
  • 4
    PyOpenCL

    PyOpenCL

    OpenCL integration for Python, plus shiny features

    ...It enables developers to harness the full power of heterogeneous computing directly from Python, combining Python’s ease of use with the performance benefits of OpenCL. PyOpenCL also includes convenient features for managing memory, compiling kernels, and interfacing with NumPy, making it a preferred choice in scientific computing, data analysis, and machine learning workflows that demand acceleration.
    Downloads: 0 This Week
    Last Update:
    See Project
  • AI-powered service management for IT and enterprise teams Icon
    AI-powered service management for IT and enterprise teams

    Enterprise-grade ITSM, for every business

    Give your IT, operations, and business teams the ability to deliver exceptional services—without the complexity. Maximize operational efficiency with refreshingly simple, AI-powered Freshservice.
    Try it Free
  • 5
    Autograd

    Autograd

    Efficiently computes derivatives of numpy code

    Autograd can automatically differentiate native Python and Numpy code. It can handle a large subset of Python's features, including loops, ifs, recursion and closures, and it can even take derivatives of derivatives of derivatives. It supports reverse-mode differentiation (a.k.a. backpropagation), which means it can efficiently take gradients of scalar-valued functions with respect to array-valued arguments, as well as forward-mode differentiation, and the two can be composed arbitrarily. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 6
    spyder

    spyder

    The scientific Python development environment

    Spyder is a free and open source scientific environment written in Python, for Python, and designed by and for scientists, engineers and data analysts. It features a unique combination of the advanced editing, analysis, debugging, and profiling functionality of a comprehensive development tool with the data exploration, interactive execution, deep inspection, and beautiful visualization capabilities of a scientific package. Spyder’s multi-language Editor integrates a number of powerful tools...
    Downloads: 218 This Week
    Last Update:
    See Project
  • 7
    ModernGL

    ModernGL

    Modern OpenGL binding for Python

    ModernGL is a Python wrapper over OpenGL, designed to simplify the creation of high-performance, modern graphics applications. It provides an intuitive API for rendering 2D and 3D graphics, making it accessible to both beginners and experienced developers. ModernGL is suitable for applications such as games, simulations, and data visualizations.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 8
    segyio

    segyio

    Fast Python library for SEGY files

    Segyio is a small LGPL-licensed C library for easy interaction with SEG-Y and Seismic Unix formatted seismic data, with language bindings for Python and Matlab. Segyio is an attempt to create an easy-to-use, embeddable, community-oriented library for seismic applications. Features are added as they are needed; suggestions and contributions of all kinds are very welcome.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 9
    PRML

    PRML

    PRML algorithms implemented in Python

    PRML repository is a respected and well-maintained project that implements the foundational algorithms from the famous textbook Pattern Recognition and Machine Learning by Christopher M. Bishop, providing a practical and accessible Python reference for both students and professionals. Rather than just summarizing concepts, the repository includes working code that demonstrates linear regression and classification, kernel methods, neural networks, graphical models, mixture models with EM...
    Downloads: 4 This Week
    Last Update:
    See Project
  • Build AI Apps with Gemini 3 on Vertex AI Icon
    Build AI Apps with Gemini 3 on Vertex AI

    Access Google’s most capable multimodal models. Train, test, and deploy AI with 200+ foundation models on one platform.

    Vertex AI gives developers access to Gemini 3—Google’s most advanced reasoning and coding model—plus 200+ foundation models including Claude, Llama, and Gemma. Build generative AI apps with Vertex AI Studio, customize with fine-tuning, and deploy to production with enterprise-grade MLOps. New customers get $300 in free credits.
    Try Vertex AI Free
  • 10
    AWS Deep Learning Containers

    AWS Deep Learning Containers

    A set of Docker images for training and serving models in TensorFlow

    AWS Deep Learning Containers (DLCs) are a set of Docker images for training and serving models in TensorFlow, TensorFlow 2, PyTorch, and MXNet. Deep Learning Containers provide optimized environments with TensorFlow and MXNet, Nvidia CUDA (for GPU instances), and Intel MKL (for CPU instances) libraries and are available in the Amazon Elastic Container Registry (Amazon ECR). The AWS DLCs are used in Amazon SageMaker as the default vehicles for your SageMaker jobs such as training, inference, transforms etc. They've been tested for machine learning workloads on Amazon EC2, Amazon ECS and Amazon EKS services as well. ...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 11
    Flax

    Flax

    Flax is a neural network library for JAX

    ...Flax emphasizes composability: optimizers, training loops, and checkpointing are provided as examples or utilities rather than monolithic frameworks, encouraging research-friendly customization. The library is widely used in vision, language, and reinforcement learning, often serving as a thin layer atop NumPy-like JAX primitives. Tutorials and examples show patterns for multi-host training, mixed precision, and advanced input pipelines that scale from laptops to TPUs.
    Downloads: 4 This Week
    Last Update:
    See Project
  • 12
    TextDistance

    TextDistance

    Compute distance between sequences

    Python library for comparing the distance between two or more sequences by many algorithms. For main algorithms, text distance try to call known external libraries (fastest first) if available (installed in your system) and possible (this implementation can compare this type of sequences). Install text distance with extras for this feature. Textdistance use benchmark results for algorithm optimization and try to call the fastest external lib first (if possible). TextDistance show benchmarks...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 13
    Cython

    Cython

    The most widely used Python to C compiler

    ...Easily tune readable Python code into plain C performance by adding static type declarations, also in Python syntax. Use combined source code level debugging to find bugs in your Python, Cython, and C code. Interact efficiently with large data sets, e.g. using multi-dimensional NumPy arrays. Quickly build your applications within the large, mature, and widely used CPython ecosystem. Integrate natively with existing code and data from legacy, low-level or high-performance libraries and applications. The Cython language is a superset of the Python language that additionally supports calling C functions and declaring C types on variables and class attributes.
    Downloads: 5 This Week
    Last Update:
    See Project
  • 14
    spaCy

    spaCy

    Industrial-strength Natural Language Processing (NLP)

    spaCy is a library built on the very latest research for advanced Natural Language Processing (NLP) in Python and Cython. Since its inception it was designed to be used for real world applications-- for building real products and gathering real insights. It comes with pretrained statistical models and word vectors, convolutional neural network models, easy deep learning integration and so much more. spaCy is the fastest syntactic parser in the world according to independent benchmarks, with...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 15
    redshift_connector

    redshift_connector

    Amazon Redshift connector for Python

    redshift_connector is the Amazon Redshift connector for Python. Easy integration with pandas and numpy, as well as support for numerous Amazon Redshift-specific features help you get the most out of your data. redshift_connector integrates with various open-source projects to provide an interface to Amazon Redshift. Please open an issue with our project to request new integrations or get support for a redshift_connector issue seen in an existing integration.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 16
    Haiku

    Haiku

    JAX-based neural network library

    Haiku is a library built on top of JAX designed to provide simple, composable abstractions for machine learning research. Haiku is a simple neural network library for JAX that enables users to use familiar object-oriented programming models while allowing full access to JAX’s pure function transformations. Haiku is designed to make the common things we do such as managing model parameters and other model state simpler and similar in spirit to the Sonnet library that has been widely used...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 17
    IVY

    IVY

    The Unified Machine Learning Framework

    Take any code that you'd like to include. For example, an existing TensorFlow model, and some useful functions from both PyTorch and NumPy libraries. Choose any framework for writing your higher-level pipeline, including data loading, distributed training, analytics, logging, visualization etc. Choose any backend framework which should be used under the hood, for running this entire pipeline. Choose the most appropriate device or combination of devices for your needs.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 18
    Flower

    Flower

    Flower: A Friendly Federated Learning Framework

    ...Flower can be used with any machine learning framework, for example, PyTorch, TensorFlow, Hugging Face Transformers, PyTorch Lightning, scikit-learn, JAX, TFLite, MONAI, fastai, MLX, XGBoost, Pandas for federated analytics, or even raw NumPy for users who enjoy computing gradients by hand.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 19
    Jittor

    Jittor

    Jittor is a high-performance deep learning framework

    ...Module Design and Dynamic Graph Execution is used in the front-end, which is the most popular design for deep learning framework interface. The back-end is implemented by high-performance languages, such as CUDA, C++. Jittor'op is similar to NumPy. Let's try some operations. We create Var a and b via operation jt.float32, and add them. Printing those variables shows they have the same shape and dtype.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 20
    Homemade Machine Learning

    Homemade Machine Learning

    Python examples of popular machine learning algorithms

    ...The purpose is pedagogical: you’ll see linear regression, logistic regression, k-means clustering, neural nets, decision trees, etc., built in Python using fundamentals like NumPy and Matplotlib, not hidden behind API calls. It is well suited for learners who want to move beyond library usage to understand how algorithms operate internally—how cost functions, gradients, updates and predictions work.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 21
    PennyLane

    PennyLane

    A cross-platform Python library for differentiable programming

    ...You can combine multiple quantum devices with classical processing arbitrarily! Support for hybrid quantum and classical models, and compatible with existing machine learning libraries. Quantum circuits can be set up to interface with either NumPy, PyTorch, JAX, or TensorFlow, allowing hybrid CPU-GPU-QPU computations. The same quantum circuit model can be run on different devices. Install plugins to run your computational circuits on more devices, including Strawberry Fields, Amazon Braket, Qiskit and IBM Q, Google Cirq, Rigetti Forest, and the Microsoft QDK.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 22
    Glumpy

    Glumpy

    Python+Numpy+OpenGL, scalable and beautiful scientific visualization

    ...It abstracts complex OpenGL tasks into Pythonic constructs, making it easier for scientists, artists, and developers to harness the power of the GPU for real-time rendering and data visualization. Glumpy is particularly well-suited for rapid prototyping of graphical applications, and its integration with NumPy and shader programming makes it a powerful tool for both research and creative exploration.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 23

    geometry3d

    A Python library for geometric objects in 3 dimentions

    ...It also can tell if it contains the other object or is it contained by that. Where appropriate, it's easy to check orthogonality and parallelism. Vectors are sub-typed from numpy ndarray class. Extensive unit tests are included. Test coverage exceeds 95%. See documentation of the library internals in section Files ( https://sourceforge.net/projects/geometry3d/files/ ).
    Downloads: 1 This Week
    Last Update:
    See Project
  • 24
    SageMaker MXNet Inference Toolkit

    SageMaker MXNet Inference Toolkit

    Toolkit for allowing inference and serving with MXNet in SageMaker

    ...AWS Deep Learning Containers (DLCs) are a set of Docker images for training and serving models in TensorFlow, TensorFlow 2, PyTorch, and MXNet. Deep Learning Containers provide optimized environments with TensorFlow and MXNet, Nvidia CUDA (for GPU instances), and Intel MKL (for CPU instances) libraries and are available in the Amazon Elastic Container Registry (Amazon ECR). The AWS DLCs are used in Amazon SageMaker as the default vehicles for your SageMaker jobs such as training, inference, transforms etc. They've been tested for machine learning workloads on Amazon EC2, Amazon ECS and Amazon EKS services as well.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 25
    PySchool

    PySchool

    Installable / Portable Python Distribution for Everyone.

    PySchool is a free and open-source Python distribution intended primarily for students who learn Python and data analysis, but it can also used by scientists, engineering, and data scientists. It includes more than 150 Python packages (full edition) including numpy, pandas, scipy, sympy, keras, scikit-learn, matplotlib, seaborn, beautifulsoup4...
    Leader badge
    Downloads: 1,272 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • 2
  • Next
MongoDB Logo MongoDB