Showing 288 open source projects for "machine"

View related business solutions
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • Build AI Apps with Gemini 3 on Vertex AI Icon
    Build AI Apps with Gemini 3 on Vertex AI

    Access Google’s most capable multimodal models. Train, test, and deploy AI with 200+ foundation models on one platform.

    Vertex AI gives developers access to Gemini 3—Google’s most advanced reasoning and coding model—plus 200+ foundation models including Claude, Llama, and Gemma. Build generative AI apps with Vertex AI Studio, customize with fine-tuning, and deploy to production with enterprise-grade MLOps. New customers get $300 in free credits.
    Try Vertex AI Free
  • 1
    Minkowski Engine

    Minkowski Engine

    Auto-diff neural network library for high-dimensional sparse tensors

    The Minkowski Engine is an auto-differentiation library for sparse tensors. It supports all standard neural network layers such as convolution, pooling, unspooling, and broadcasting operations for sparse tensors. The Minkowski Engine supports various functions that can be built on a sparse tensor. We list a few popular network architectures and applications here. To run the examples, please install the package and run the command in the package root directory. Compressing a neural network to...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 2
    Opyrator

    Opyrator

    Turns your machine learning code into microservices with web API

    Instantly turn your Python functions into production-ready microservices. Deploy and access your services via HTTP API or interactive UI. Seamlessly export your services into portable, shareable, and executable files or Docker images. Opyrator builds on open standards - OpenAPI, JSON Schema, and Python type hints - and is powered by FastAPI, Streamlit, and Pydantic. It cuts out all the pain for productizing and sharing your Python code - or anything you can wrap into a single Python...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 3
    Pytorch Points 3D

    Pytorch Points 3D

    Pytorch framework for doing deep learning on point clouds

    Torch Points 3D is a framework for developing and testing common deep learning models to solve tasks related to unstructured 3D spatial data i.e. Point Clouds. The framework currently integrates some of the best-published architectures and it integrates the most common public datasets for ease of reproducibility. It heavily relies on Pytorch Geometric and Facebook Hydra library thanks for the great work! We aim to build a tool that can be used for benchmarking SOTA models, while also...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 4
    earthengine-py-notebooks

    earthengine-py-notebooks

    A collection of 360+ Jupyter Python notebook examples

    earthengine-py-notebooks is a comprehensive collection of hundreds of Jupyter Python notebooks that serve as examples and tutorials for using the Google Earth Engine Python API. These notebooks are organized into thematic areas such as image processing, machine learning, visualization, filtering, and asset management, exposing users to real geospatial analysis tasks. The repository makes it easier to explore Earth Engine’s large geospatial data catalog, interactively display map layers, and generate visual insights without the need for external GIS software by leveraging interactive widgets and mapping libraries. ...
    Downloads: 1 This Week
    Last Update:
    See Project
  • MongoDB Atlas runs apps anywhere Icon
    MongoDB Atlas runs apps anywhere

    Deploy in 115+ regions with the modern database for every enterprise.

    MongoDB Atlas gives you the freedom to build and run modern applications anywhere—across AWS, Azure, and Google Cloud. With global availability in over 115 regions, Atlas lets you deploy close to your users, meet compliance needs, and scale with confidence across any geography.
    Start Free
  • 5
    Gluon CV Toolkit

    Gluon CV Toolkit

    Gluon CV Toolkit

    GluonCV provides implementations of state-of-the-art (SOTA) deep learning algorithms in computer vision. It aims to help engineers, researchers, and students quickly prototype products, validate new ideas and learn computer vision. It features training scripts that reproduce SOTA results reported in latest papers, a large set of pre-trained models, carefully designed APIs and easy-to-understand implementations and community support. From fundamental image classification, object detection,...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 6
    BudgetML

    BudgetML

    Deploy a ML inference service on a budget in 10 lines of code

    Deploy a ML inference service on a budget in less than 10 lines of code. BudgetML is perfect for practitioners who would like to quickly deploy their models to an endpoint, but not waste a lot of time, money, and effort trying to figure out how to do this end-to-end. We built BudgetML because it's hard to find a simple way to get a model in production fast and cheaply. Deploying from scratch involves learning too many different concepts like SSL certificate generation, Docker, REST,...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 7
    PyTorch SimCLR

    PyTorch SimCLR

    PyTorch implementation of SimCLR: A Simple Framework

    For quite some time now, we know about the benefits of transfer learning in Computer Vision (CV) applications. Nowadays, pre-trained Deep Convolution Neural Networks (DCNNs) are the first go-to pre-solutions to learn a new task. These large models are trained on huge supervised corpora, like the ImageNet. And most important, their features are known to adapt well to new problems. This is particularly interesting when annotated training data is scarce. In situations like this, we take the...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 8
    Tabnine

    Tabnine

    Vim client for TabNine

    ...Whether you call it IntelliSense, intelliCode, autocomplete, AI-assisted code completion, AI-powered code completion, AI copilot, AI code snippets, code suggestion, code prediction, code hinting, or content assist, you probably already know that it can save you tons of time, easily cutting your keystrokes in half. Powered by sophisticated machine learning models trained on billions of lines of trusted open source code from GitHub, Tabnine is the most advanced AI-powered code completion copilot available today. And like GitHub, it is an essential tool for professional developers.
    Downloads: 21 This Week
    Last Update:
    See Project
  • 9
    gradslam

    gradslam

    gradslam is an open source differentiable dense SLAM library

    gradslam is an open-source framework providing differentiable building blocks for simultaneous localization and mapping (SLAM) systems. We enable the usage of dense SLAM subsystems from the comfort of PyTorch. The question of “representation” is central in the context of dense simultaneous localization and mapping (SLAM). Newer learning-based approaches have the potential to leverage data or task performance to directly inform the choice of representation. However, learning representations...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Deploy Apps in Seconds with Cloud Run Icon
    Deploy Apps in Seconds with Cloud Run

    Host and run your applications without the need to manage infrastructure. Scales up from and down to zero automatically.

    Cloud Run is the fastest way to deploy containerized apps. Push your code in Go, Python, Node.js, Java, or any language and Cloud Run builds and deploys it automatically. Get fast autoscaling, pay only when your code runs, and skip the infrastructure headaches. Two million requests free per month. And new customers get $300 in free credit.
    Try Cloud Run Free
  • 10
    NLP Architect

    NLP Architect

    A model library for exploring state-of-the-art deep learning

    NLP Architect is an open-source Python library for exploring state-of-the-art deep learning topologies and techniques for optimizing Natural Language Processing and Natural Language Understanding neural networks. The library includes our past and ongoing NLP research and development efforts as part of Intel AI Lab. NLP Architect is designed to be flexible for adding new models, neural network components, data handling methods, and for easy training and running models. NLP Architect is a...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 11
    TFLearn

    TFLearn

    Deep learning library featuring a higher-level API for TensorFlow

    TFlearn is a modular and transparent deep learning library built on top of Tensorflow. It was designed to provide a higher-level API to TensorFlow in order to facilitate and speed up experimentations while remaining fully transparent and compatible with it. Easy-to-use and understand high-level API for implementing deep neural networks, with tutorials and examples. Fast prototyping through highly modular built-in neural network layers, regularizers, optimizers, and metrics. Full transparency...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 12
    fastNLP

    fastNLP

    fastNLP: A Modularized and Extensible NLP Framework

    fastNLP is a lightweight framework for natural language processing (NLP), the goal is to quickly implement NLP tasks and build complex models. A unified Tabular data container simplifies the data preprocessing process. Built-in Loader and Pipe for multiple datasets, eliminating the need for preprocessing code. Various convenient NLP tools, such as Embedding loading (including ELMo and BERT), intermediate data cache, etc.. Provide a variety of neural network components and recurrence models...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 13
    Neural Networks Collection

    Neural Networks Collection

    Neural Networks Collection

    This project implements in C++ a bunch of known Neural Networks. So far the project implements: LVQ in several variants, SOM in several variants, Hopfield network and Perceptron. Other neural network types are planned, but not implemented yet. The project can run in two modes: command line tool and Python 7.2 extension. Currently, Python version appears more functional, as it allows easy interaction with algorithms developed by other people.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 14
    Nebula-Python-SDK

    Nebula-Python-SDK

    A python SDK for managing Nebula container orchestrator

    A python SDK for managing Nebula container orchestrator. First, get NebulaPythonSDK onto your machine, now use it in your code. Nebula container orchestrator aims to help devs and ops treat IoT devices just like distributed Dockerized apps. It aim is to act as Docker orchestrator for IoT devices as well as for distributed services such as CDN or edge computing that can span thousands (possibly even millions) of devices worldwide and it does it all while being open-source and completely free. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 15
    SageMaker MXNet Training Toolkit

    SageMaker MXNet Training Toolkit

    Toolkit for running MXNet training scripts on SageMaker

    ...With the SDK, you can train and deploy models using popular deep learning frameworks Apache MXNet and TensorFlow. You can also train and deploy models with Amazon algorithms, which are scalable implementations of core machine learning algorithms that are optimized for SageMaker and GPU training. If you have your own algorithms built into SageMaker compatible Docker containers, you can train and host models using these as well.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 16
    macOS Simple KVM

    macOS Simple KVM

    Tools to set up a quick macOS VM in QEMU, accelerated by KVM

    macOS-Simple-KVM is a project that provides scripts and configuration files to easily set up and run macOS in a virtual machine using QEMU and KVM. It simplifies what is typically a complex process by offering a straightforward approach to creating a macOS VM on Linux systems with hardware virtualization support. The repository includes tools for preparing installation media, configuring virtual hardware, and managing VM launch scripts. By using KVM acceleration, the virtual machine runs with near-native performance, making it useful for testing, development, or personal experimentation. ...
    Downloads: 8 This Week
    Last Update:
    See Project
  • 17
    Frontend Regression Validator (FRED)

    Frontend Regression Validator (FRED)

    Visual regression tool used to compare baseline and updated instances

    ...The visual analysis computes the Normalized Mean Squared error and the Structural Similarity Index on the screenshots of the baseline and updated sites, while the visual AI looks at layout and content changes independently by applying image segmentation Machine Learning techniques to recognize high-level text and image visual structures. This reduces the impact of dynamic content yielding false positives. FRED is designed to be scalable. It has an internal queue and can process websites in parallel depending on the amount of RAM and CPUs (or GPUs) available.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 18
    MMdnn

    MMdnn

    Tools to help users inter-operate among deep learning frameworks

    MMdnn is a set of tools to help users inter-operate among different deep learning frameworks. E.g. model conversion and visualization. Convert models between Caffe, Keras, MXNet, Tensorflow, CNTK, PyTorch Onnx and CoreML. MMdnn is a comprehensive and cross-framework tool to convert, visualize and diagnose deep learning (DL) models. The "MM" stands for model management, and "dnn" is the acronym of deep neural network. We implement a universal converter to convert DL models between frameworks,...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 19
    Forecasting Best Practices

    Forecasting Best Practices

    Time Series Forecasting Best Practices & Examples

    Time series forecasting is one of the most important topics in data science. Almost every business needs to predict the future in order to make better decisions and allocate resources more effectively. This repository provides examples and best practice guidelines for building forecasting solutions. The goal of this repository is to build a comprehensive set of tools and examples that leverage recent advances in forecasting algorithms to build solutions and operationalize them. Rather than...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 20
    AdaNet

    AdaNet

    Fast and flexible AutoML with learning guarantees

    AdaNet is a TensorFlow framework for fast and flexible AutoML with learning guarantees. AdaNet is a lightweight TensorFlow-based framework for automatically learning high-quality models with minimal expert intervention. AdaNet builds on recent AutoML efforts to be fast and flexible while providing learning guarantees. Importantly, AdaNet provides a general framework for not only learning a neural network architecture but also for learning to the ensemble to obtain even better models. At each...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 21
    Unified Sessions Manager

    Unified Sessions Manager

    Pioneering Private and Public Cloud Management since 2008

    The UnifiedSessionsManager supports the integrated management of user sessions within Private-Clouds, comprising heterogeneous IT landscapes of various physical and virtual machines, hypervisor management, and virtual user sessions with remote desktops. Extracted documents see https://sourceforge.net/projects/ctys-doc.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 22
    Tensor2Tensor

    Tensor2Tensor

    Library of deep learning models and datasets

    Deep Learning (DL) has enabled the rapid advancement of many useful technologies, such as machine translation, speech recognition and object detection. In the research community, one can find code open-sourced by the authors to help in replicating their results and further advancing deep learning. However, most of these DL systems use unique setups that require significant engineering effort and may only work for a specific problem or architecture, making it hard to run new experiments and compare the results. ...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 23
    SageMaker Containers

    SageMaker Containers

    Create SageMaker-compatible Docker containers

    Amazon SageMaker is a fully managed service for data science and machine learning (ML) workflows. You can use Amazon SageMaker to simplify the process of building, training, and deploying ML models. To train a model, you can include your training script and dependencies in a Docker container that runs your training code. A container provides an effectively isolated environment, ensuring a consistent runtime and reliable training process.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 24
    DeepLearning

    DeepLearning

    Deep Learning (Flower Book) mathematical derivation

    ...It is edited by three world-renowned experts, Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Includes linear algebra, probability theory, information theory, numerical optimization, and related content in machine learning. At the same time, it also introduces deep learning techniques used by practitioners in the industry, including deep feedforward networks, regularization, optimization algorithms, convolutional networks, sequence modeling and practical methods, and investigates topics such as natural language processing, Applications in speech recognition, computer vision, online recommender systems, bioinformatics, and video games. ...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 25
    TensorFlow Object Counting API

    TensorFlow Object Counting API

    The TensorFlow Object Counting API is an open source framework

    The TensorFlow Object Counting API is an open source framework built on top of TensorFlow and Keras that makes it easy to develop object counting systems. Please contact if you need professional object detection & tracking & counting project with super high accuracy and reliability! You can train TensorFlow models with your own training data to built your own custom object counter system! If you want to learn how to do it, please check one of the sample projects, which cover some of the...
    Downloads: 1 This Week
    Last Update:
    See Project
MongoDB Logo MongoDB