Showing 272 open source projects for "python q learning"

View related business solutions
  • Resolve Support Tickets 2x Faster​ with ServoDesk Icon
    Resolve Support Tickets 2x Faster​ with ServoDesk

    Full access to Enterprise features. No credit card required.

    What if You Could Automate 90% of Your Repetitive Tasks in Under 30 Days? At ServoDesk, we help businesses like yours automate operations with AI, allowing you to cut service times in half and increase productivity by 25% - without hiring more staff.
    Try ServoDesk for free
  • Run applications fast and securely in a fully managed environment Icon
    Run applications fast and securely in a fully managed environment

    Cloud Run is a fully-managed compute platform that lets you run your code in a container directly on top of scalable infrastructure.

    Run frontend and backend services, batch jobs, deploy websites and applications, and queue processing workloads without the need to manage infrastructure.
    Try for free
  • 1
    Public APIs

    Public APIs

    A collective list of free APIs

    public-apis is a collaboratively maintained repository that provides an extensive, categorized list of publicly available APIs for developers. Curated by community contributors and the team at APILayer, it serves as a centralized resource for discovering APIs across a wide range of domains, including data, machine learning, weather, entertainment, and finance. The project aims to make API exploration and integration more accessible by offering a single, organized index of open and...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 2
    aws-devops-zero-to-hero

    aws-devops-zero-to-hero

    AWS zero to hero repo for devops engineers to learn AWS in 30 Days

    aws-devops-zero-to-hero is a 30-day AWS learning roadmap aimed squarely at DevOps engineers who want both conceptual understanding and hands-on projects. The README is structured as a day-by-day syllabus, starting with “Day 1: Introduction to AWS” and moving through IAM, EC2, VPC networking, security, DNS (Route 53), storage (S3), and many other core services. Each day mixes explanation with at least one concrete project or lab, such as deploying applications on EC2, designing secure VPCs,...
    Downloads: 10 This Week
    Last Update:
    See Project
  • 3
    CoreNet

    CoreNet

    CoreNet: A library for training deep neural networks

    CoreNet is Apple’s internal deep learning framework for distributed neural network training, designed for high scalability, low-latency communication, and strong hardware efficiency. It focuses on enabling large-scale model training across clusters of GPUs and accelerators by optimizing data flow and parallelism strategies. CoreNet provides abstractions for data, tensor, and pipeline parallelism, allowing models to scale without code duplication or heavy manual configuration. Its distributed...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 4
    BentoML

    BentoML

    Unified Model Serving Framework

    BentoML simplifies ML model deployment and serves your models at a production scale. Support multiple ML frameworks natively: Tensorflow, PyTorch, XGBoost, Scikit-Learn and many more! Define custom serving pipeline with pre-processing, post-processing and ensemble models. Standard .bento format for packaging code, models and dependencies for easy versioning and deployment. Integrate with any training pipeline or ML experimentation platform. Parallelize compute-intense model inference...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Powerful cloud-based licensing solution designed for fast-growing software businesses. Icon
    Powerful cloud-based licensing solution designed for fast-growing software businesses.

    A single-point of license control for desktop, SaaS, and mobile applications, APIs, VMs and devices.

    10Duke Enterprise is a cloud-based, scalable and flexible software licensing solution enabling software vendors to easily configure, manage and monetize the licenses they provide to their customers in real-time.
    Learn More
  • 5
    zvt

    zvt

    Modular quant framework

    For practical trading, a complex algorithm is fragile, a complex algorithm building on a complex facility is more fragile, complex algorithm building on a complex facility by a complex team is more and more fragile. zvt wants to provide a simple facility for building a straightforward algorithm. Technologies come and technologies go, but market insight is forever. Your world is built by core concepts inside you, so it’s you. zvt world is built by core concepts inside the market, so it’s zvt....
    Downloads: 0 This Week
    Last Update:
    See Project
  • 6
    AIMET

    AIMET

    AIMET is a library that provides advanced quantization and compression

    Qualcomm Innovation Center (QuIC) is at the forefront of enabling low-power inference at the edge through its pioneering model-efficiency research. QuIC has a mission to help migrate the ecosystem toward fixed-point inference. With this goal, QuIC presents the AI Model Efficiency Toolkit (AIMET) - a library that provides advanced quantization and compression techniques for trained neural network models. AIMET enables neural networks to run more efficiently on fixed-point AI hardware...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 7
    Lightweight' GAN

    Lightweight' GAN

    Implementation of 'lightweight' GAN, proposed in ICLR 2021

    Implementation of 'lightweight' GAN proposed in ICLR 2021, in Pytorch. The main contribution of the paper is a skip-layer excitation in the generator, paired with autoencoding self-supervised learning in the discriminator. Quoting the one-line summary "converge on single gpu with few hours' training, on 1024 resolution sub-hundred images". Augmentation is essential for Lightweight GAN to work effectively in a low data setting. You can test and see how your images will be augmented before...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 8
    Optuna

    Optuna

    A hyperparameter optimization framework

    ...You don't need to create a Python script to call Optuna's visualization functions. Automated search for optimal hyperparameters using Python conditionals, loops, and syntax. Efficiently search large spaces and prune unpromising trials for faster results. Parallelize hyperparameter searches over multiple threads or processes without modifying code.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 9
    FairChem

    FairChem

    FAIR Chemistry's library of machine learning methods for chemistry

    FAIRChem is a unified library for machine learning in chemistry and materials, consolidating data, pretrained models, demos, and application code into a single, versioned toolkit. Version 2 modernizes the stack with a cleaner core package and breaking changes relative to V1, focusing on simpler installs and a stable API surface for production and research. The centerpiece models (e.g., UMA variants) plug directly into the ASE ecosystem via a FAIRChem calculator, so users can run relaxations,...
    Downloads: 2 This Week
    Last Update:
    See Project
  • Rezku Point of Sale Icon
    Rezku Point of Sale

    Designed for Real-World Restaurant Operations

    Rezku is an all-inclusive ordering platform and management solution for all types of restaurant and bar concepts. You can now get a fully custom branded downloadable smartphone ordering app for your restaurant exclusively from Rezku.
    Learn More
  • 10
    Kornia

    Kornia

    Open Source Differentiable Computer Vision Library

    Kornia is a differentiable computer vision library for PyTorch. It consists of a set of routines and differentiable modules to solve generic computer vision problems. At its core, the package uses PyTorch as its main backend both for efficiency and to take advantage of the reverse-mode auto-differentiation to define and compute the gradient of complex functions. Inspired by existing packages, this library is composed by a subset of packages containing operators that can be inserted within...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 11
    Playground Cheatsheet for Python

    Playground Cheatsheet for Python

    Playground and cheatsheet for learning Python

    learn-python is another repository by Oleksii Trekhleb that serves as both a playground and an interactive cheatsheet for learning Python. It contains numerous Python scripts organized by topic (lists, dictionaries, loops, functions, classes, modules, etc.), each with code examples, explanations, test assertions, and links to further readings.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 12
    NNCF

    NNCF

    Neural Network Compression Framework for enhanced OpenVINO

    NNCF (Neural Network Compression Framework) is an optimization toolkit for deep learning models, designed to apply quantization, pruning, and other techniques to improve inference efficiency.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 13
    nbmake

    nbmake

    Pytest plugin for testing notebooks

    Pytest plugin for testing and releasing notebook documentation. To raise the quality of scientific material through better automation. Research/Machine Learning Software Engineers who maintain packages/teaching materials with documentation written in notebooks.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 14
    Opacus

    Opacus

    Training PyTorch models with differential privacy

    Opacus is a library that enables training PyTorch models with differential privacy. It supports training with minimal code changes required on the client, has little impact on training performance, and allows the client to online track the privacy budget expended at any given moment. Vectorized per-sample gradient computation that is 10x faster than micro batching. Supports most types of PyTorch models and can be used with minimal modification to the original neural network. Open source,...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 15
    SageMaker Spark Container

    SageMaker Spark Container

    Docker image used to run data processing workloads

    Apache Spark™ is a unified analytics engine for large-scale data processing. It provides high-level APIs in Scala, Java, Python, and R, and an optimized engine that supports general computation graphs for data analysis. It also supports a rich set of higher-level tools including Spark SQL for SQL and DataFrames, MLlib for machine learning, GraphX for graph processing, and Structured Streaming for stream processing. The SageMaker Spark Container is a Docker image used to run batch data processing workloads on Amazon SageMaker using the Apache Spark framework. ...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 16
    Superduper

    Superduper

    Superduper: Integrate AI models and machine learning workflows

    Superduper is a Python-based framework for building end-2-end AI-data workflows and applications on your own data, integrating with major databases. It supports the latest technologies and techniques, including LLMs, vector-search, RAG, and multimodality as well as classical AI and ML paradigms. Developers may leverage Superduper by building compositional and declarative objects that out-source the details of deployment, orchestration versioning, and more to the Superduper engine. This...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 17
    GIXY

    GIXY

    Nginx configuration static analyzer

    Gixy is a tool to analyze Nginx configuration. The main goal of Gixy is to prevent security misconfiguration and automate flaw detection. Currently supported Python versions are 2.7, 3.5, 3.6 and 3.7. Gixy is well tested only on GNU/Linux, other OSs may have some issues. You can find things that Gixy is learning to detect at Issues labeled with "new plugin". By default Gixy will try to analyze Nginx configuration placed in /etc/nginx/nginx.conf. Or something else, you can find all other gixy arguments with the help command: gixy --help. ...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 18
    Tree

    Tree

    tree is a library for working with nested data structures

    Tree (dm-tree) is a lightweight Python library developed by Google DeepMind for manipulating nested data structures (also called pytrees). It generalizes Python’s built-in map function to operate over arbitrarily nested collections — including lists, tuples, dicts, and custom container types — while preserving their structure. This makes it particularly useful in machine learning pipelines and JAX-based workflows, where complex parameter trees or hierarchical state representations are common. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 19
    cheat.sh

    cheat.sh

    The only cheat sheet you need

    cheat.sh is a compact, network-accessible cheat-sheet service that serves concise examples and usage notes for hundreds of shell commands, programming languages, and tools via a simple HTTP interface. You can query it from the terminal (for example curl cht.sh/rsync or curl cheat.sh/ls) or browse the web front page; it also supports a shorthand hostname (cht.sh) and provides both online and standalone/local installation modes. The repository contains the server and client code, instructions...
    Downloads: 3 This Week
    Last Update:
    See Project
  • 20
    Amazon Braket PennyLane Plugin

    Amazon Braket PennyLane Plugin

    A plugin for allowing Xanadu PennyLane to use Amazon Braket devices

    The Amazon Braket PennyLane plugin offers two Amazon Braket quantum devices to work with PennyLane. The Amazon Braket Python SDK is an open-source library that provides a framework to interact with quantum computing hardware devices and simulators through Amazon Braket. PennyLane is a machine learning library for optimization and automatic differentiation of hybrid quantum-classical computations. Once the Pennylane-Braket plugin is installed, the provided Braket devices can be accessed straight away in PennyLane, without the need to import any additional packages. ...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 21
    Django friendly finite state machine

    Django friendly finite state machine

    Django friendly finite state machine support

    Django-fsm adds simple declarative state management for Django models. If you need parallel task execution, view, and background task code reuse over different flows - check my new project Django-view flow. Instead of adding a state field to a Django model and managing its values by hand, you use FSMField and mark model methods with the transition decorator. These methods could contain side effects of the state change. You may also take a look at the Django-fsm-admin project containing a...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 22
    Imagen - Pytorch

    Imagen - Pytorch

    Implementation of Imagen, Google's Text-to-Image Neural Network

    Implementation of Imagen, Google's Text-to-Image Neural Network that beats DALL-E2, in Pytorch. It is the new SOTA for text-to-image synthesis. Architecturally, it is actually much simpler than DALL-E2. It consists of a cascading DDPM conditioned on text embeddings from a large pre-trained T5 model (attention network). It also contains dynamic clipping for improved classifier-free guidance, noise level conditioning, and a memory-efficient unit design. It appears neither CLIP nor prior...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 23
    towhee

    towhee

    Framework that is dedicated to making neural data processing

    Towhee is an open-source machine-learning pipeline that helps you encode your unstructured data into embeddings. You can use our Python API to build a prototype of your pipeline and use Towhee to automatically optimize it for production-ready environments. From images to text to 3D molecular structures, Towhee supports data transformation for nearly 20 different unstructured data modalities.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 24
    Unicorn

    Unicorn

    The magical reactive component framework for Django

    Quickly add in simple interactions to regular Django templates without learning a new templating language. Stop fighting with a new JavaScript build tool and separate process to use yet another frontend framework. Building a feature-rich API is complicated. Skip creating a bunch of serializers and just use Django. Unicorn progressively enhances a normal Django view, so the initial render of components is fast and great for SEO.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 25
    Luigi

    Luigi

    Python module that helps you build complex pipelines of batch jobs

    ...These tasks can be anything, but are typically long running things like Hadoop jobs, dumping data to/from databases, running machine learning algorithms, or anything else. You can build pretty much any task you want, but Luigi also comes with a toolbox of several common task templates that you use. It includes support for running Python mapreduce jobs in Hadoop, as well as Hive, and Pig, jobs. It also comes with file system abstractions for HDFS, and local files that ensures all file system operations are atomic.
    Downloads: 0 This Week
    Last Update:
    See Project