Showing 288 open source projects for "machine"

View related business solutions
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • Cut Data Warehouse Costs up to 54% with BigQuery Icon
    Cut Data Warehouse Costs up to 54% with BigQuery

    Migrate from Snowflake, Databricks, or Redshift with free migration tools. Exabyte scale without the Exabyte price.

    BigQuery delivers up to 54% lower TCO than cloud alternatives. Migrate from legacy or competing warehouses using free BigQuery Migration Service with automated SQL translation. Get serverless scale with no infrastructure to manage, compressed storage, and flexible pricing—pay per query or commit for deeper discounts. New customers get $300 in free credit.
    Try BigQuery Free
  • 1
    BayesianOptimization

    BayesianOptimization

    A Python implementation of global optimization with gaussian processes

    BayesianOptimization is a Python library that helps find the maximum (or minimum) of expensive or unknown objective functions using Bayesian optimization. This technique is especially useful for hyperparameter tuning in machine learning, where evaluating the objective function is costly. The library provides an easy-to-use API for defining bounds and optimizing over parameter spaces using probabilistic models like Gaussian Processes.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 2
    RecBole

    RecBole

    A unified, comprehensive and efficient recommendation library

    A unified, comprehensive and efficient recommendation library. We design general and extensible data structures to unify the formatting and usage of various recommendation datasets. We implement more than 100 commonly used recommendation algorithms and provide formatted copies of 28 recommendation datasets. We support a series of widely adopted evaluation protocols or settings for testing and comparing recommendation algorithms. RecBole is developed based on Python and PyTorch for...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 3
    BentoML

    BentoML

    Unified Model Serving Framework

    BentoML simplifies ML model deployment and serves your models at a production scale. Support multiple ML frameworks natively: Tensorflow, PyTorch, XGBoost, Scikit-Learn and many more! Define custom serving pipeline with pre-processing, post-processing and ensemble models. Standard .bento format for packaging code, models and dependencies for easy versioning and deployment. Integrate with any training pipeline or ML experimentation platform. Parallelize compute-intense model inference...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 4
    zvt

    zvt

    Modular quant framework

    For practical trading, a complex algorithm is fragile, a complex algorithm building on a complex facility is more fragile, complex algorithm building on a complex facility by a complex team is more and more fragile. zvt wants to provide a simple facility for building a straightforward algorithm. Technologies come and technologies go, but market insight is forever. Your world is built by core concepts inside you, so it’s you. zvt world is built by core concepts inside the market, so it’s zvt....
    Downloads: 0 This Week
    Last Update:
    See Project
  • Deploy Apps in Seconds with Cloud Run Icon
    Deploy Apps in Seconds with Cloud Run

    Host and run your applications without the need to manage infrastructure. Scales up from and down to zero automatically.

    Cloud Run is the fastest way to deploy containerized apps. Push your code in Go, Python, Node.js, Java, or any language and Cloud Run builds and deploys it automatically. Get fast autoscaling, pay only when your code runs, and skip the infrastructure headaches. Two million requests free per month. And new customers get $300 in free credit.
    Try Cloud Run Free
  • 5
    Lightly

    Lightly

    A python library for self-supervised learning on images

    A python library for self-supervised learning on images. We, at Lightly, are passionate engineers who want to make deep learning more efficient. That's why - together with our community - we want to popularize the use of self-supervised methods to understand and curate raw image data. Our solution can be applied before any data annotation step and the learned representations can be used to visualize and analyze datasets. This allows selecting the best core set of samples for model training...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 6
    Kornia

    Kornia

    Open Source Differentiable Computer Vision Library

    Kornia is a differentiable computer vision library for PyTorch. It consists of a set of routines and differentiable modules to solve generic computer vision problems. At its core, the package uses PyTorch as its main backend both for efficiency and to take advantage of the reverse-mode auto-differentiation to define and compute the gradient of complex functions. Inspired by existing packages, this library is composed by a subset of packages containing operators that can be inserted within...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 7
    DeepPavlov

    DeepPavlov

    A library for deep learning end-to-end dialog systems and chatbots

    DeepPavlov makes it easy for beginners and experts to create dialogue systems. The best place to start is with user-friendly tutorials. They provide quick and convenient introduction on how to use DeepPavlov with complete, end-to-end examples. No installation needed. Guides explain the concepts and components of DeepPavlov. Follow step-by-step instructions to install, configure and extend DeepPavlov framework for your use case. DeepPavlov is an open-source framework for chatbots and virtual...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 8
    Prompt Engineering Interactive Tutorial

    Prompt Engineering Interactive Tutorial

    Anthropic's Interactive Prompt Engineering Tutorial

    ...Lessons include building prompts from scratch for common tasks like extraction, classification, transformation, and step-by-step reasoning, with checkpoints that let you compare your outputs against solid baselines. You’ll also practice advanced patterns such as tool use, constrained generation, and response validation so outputs are trustworthy and machine-consumable.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 9
    Avalanche

    Avalanche

    End-to-End Library for Continual Learning based on PyTorch

    Avalanche is an end-to-end Continual Learning library based on Pytorch, born within ContinualAI with the unique goal of providing a shared and collaborative open-source (MIT licensed) codebase for fast prototyping, training and reproducible evaluation of continual learning algorithms. Avalanche can help Continual Learning researchers in several ways. This module maintains a uniform API for data handling: mostly generating a stream of data from one or more datasets. It contains all the major...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Managed MySQL, PostgreSQL, and SQL Databases on Google Cloud Icon
    Managed MySQL, PostgreSQL, and SQL Databases on Google Cloud

    Get back to your application and leave the database to us. Cloud SQL automatically handles backups, replication, and scaling.

    Cloud SQL is a fully managed relational database for MySQL, PostgreSQL, and SQL Server. We handle patching, backups, replication, encryption, and failover—so you can focus on your app. Migrate from on-prem or other clouds with free Database Migration Service. IDC found customers achieved 246% ROI. New customers get $300 in credits plus a 30-day free trial.
    Try Cloud SQL Free
  • 10
    Opacus

    Opacus

    Training PyTorch models with differential privacy

    Opacus is a library that enables training PyTorch models with differential privacy. It supports training with minimal code changes required on the client, has little impact on training performance, and allows the client to online track the privacy budget expended at any given moment. Vectorized per-sample gradient computation that is 10x faster than micro batching. Supports most types of PyTorch models and can be used with minimal modification to the original neural network. Open source,...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 11
    PyG

    PyG

    Graph Neural Network Library for PyTorch

    PyG (PyTorch Geometric) is a library built upon PyTorch to easily write and train Graph Neural Networks (GNNs) for a wide range of applications related to structured data. It consists of various methods for deep learning on graphs and other irregular structures, also known as geometric deep learning, from a variety of published papers. In addition, it consists of easy-to-use mini-batch loaders for operating on many small and single giant graphs, multi GPU-support, DataPipe support,...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 12
    The Algorithms Python

    The Algorithms Python

    All Algorithms implemented in Python

    ...Each implementation is designed with clarity in mind, favoring readability and comprehension over performance optimization. The project covers various domains including mathematics, cryptography, machine learning, sorting, graph theory, and more. With contributions from a large global community, it continually grows and improves through collaboration and peer review. This repository is an ideal reference for students, educators, and developers seeking hands-on experience with algorithmic concepts in Python.
    Downloads: 5 This Week
    Last Update:
    See Project
  • 13
    DGL

    DGL

    Python package built to ease deep learning on graph

    Build your models with PyTorch, TensorFlow or Apache MXNet. Fast and memory-efficient message passing primitives for training Graph Neural Networks. Scale to giant graphs via multi-GPU acceleration and distributed training infrastructure. DGL empowers a variety of domain-specific projects including DGL-KE for learning large-scale knowledge graph embeddings, DGL-LifeSci for bioinformatics and cheminformatics, and many others. We are keen to bringing graphs closer to deep learning researchers....
    Downloads: 0 This Week
    Last Update:
    See Project
  • 14
    Hypothesis

    Hypothesis

    The property-based testing library for Python

    Hypothesis is a powerful library for property-based testing in Python. Instead of writing specific test cases, users define properties and Hypothesis generates random inputs to uncover edge cases and bugs. It integrates with unittest and pytest, shrinking failing examples to minimal reproducible cases. Widely adopted in production systems, Hypothesis boosts code reliability by exploring input spaces far beyond manually crafted tests.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 15
    PRML

    PRML

    PRML algorithms implemented in Python

    PRML repository is a respected and well-maintained project that implements the foundational algorithms from the famous textbook Pattern Recognition and Machine Learning by Christopher M. Bishop, providing a practical and accessible Python reference for both students and professionals. Rather than just summarizing concepts, the repository includes working code that demonstrates linear regression and classification, kernel methods, neural networks, graphical models, mixture models with EM algorithms, approximate inference, and sequential data methods — all following the book’s structure and notation. ...
    Downloads: 3 This Week
    Last Update:
    See Project
  • 16
    FairChem

    FairChem

    FAIR Chemistry's library of machine learning methods for chemistry

    FAIRChem is a unified library for machine learning in chemistry and materials, consolidating data, pretrained models, demos, and application code into a single, versioned toolkit. Version 2 modernizes the stack with a cleaner core package and breaking changes relative to V1, focusing on simpler installs and a stable API surface for production and research. The centerpiece models (e.g., UMA variants) plug directly into the ASE ecosystem via a FAIRChem calculator, so users can run relaxations, molecular dynamics, spin-state energetics, and surface catalysis workflows with the same pretrained network by switching a task flag. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 17
    Jina

    Jina

    Build cross-modal and multimodal applications on the cloud

    Jina is a framework that empowers anyone to build cross-modal and multi-modal applications on the cloud. It uplifts a PoC into a production-ready service. Jina handles the infrastructure complexity, making advanced solution engineering and cloud-native technologies accessible to every developer. Build applications that deliver fresh insights from multiple data types such as text, image, audio, video, 3D mesh, PDF with Jina AI’s DocArray. Polyglot gateway that supports gRPC, Websockets, HTTP,...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 18
    Maltrail

    Maltrail

    Malicious traffic detection system

    ...Sensor(s) is a standalone component running on the monitoring node (e.g. Linux platform connected passively to the SPAN/mirroring port or transparently inline on a Linux bridge) or at the standalone machine (e.g. Honeypot) where it "monitors" the passing Traffic for blacklisted items/trails (i.e. domain names, URLs and/or IPs).
    Downloads: 5 This Week
    Last Update:
    See Project
  • 19
    Lightweight' GAN

    Lightweight' GAN

    Implementation of 'lightweight' GAN, proposed in ICLR 2021

    Implementation of 'lightweight' GAN proposed in ICLR 2021, in Pytorch. The main contribution of the paper is a skip-layer excitation in the generator, paired with autoencoding self-supervised learning in the discriminator. Quoting the one-line summary "converge on single gpu with few hours' training, on 1024 resolution sub-hundred images". Augmentation is essential for Lightweight GAN to work effectively in a low data setting. You can test and see how your images will be augmented before...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 20
    Tree

    Tree

    tree is a library for working with nested data structures

    ...It generalizes Python’s built-in map function to operate over arbitrarily nested collections — including lists, tuples, dicts, and custom container types — while preserving their structure. This makes it particularly useful in machine learning pipelines and JAX-based workflows, where complex parameter trees or hierarchical state representations are common. The library provides efficient operations such as flatten, unflatten, and map_structure, enabling users to apply functions to all leaves of a nested structure seamlessly. Backed by a high-performance C++ core, tree is optimized for large-scale, performance-critical applications.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 21
    AI Chatbot Framework

    AI Chatbot Framework

    Python chatbot framework with Natural Language Understanding

    ...You don’t need to be an expert at artificial intelligence to create an awesome chatbot that has AI capabilities. With this boilerplate project you can create an AI-powered chatting machine in no time.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 22
    RA.Aid

    RA.Aid

    Develop software autonomously

    ...It integrates seamlessly with various development environments, providing intelligent code suggestions, automated documentation generation, and real-time error detection. By leveraging advanced machine learning models, RA.Aid aims to reduce development time and improve code quality.​
    Downloads: 0 This Week
    Last Update:
    See Project
  • 23
    nbmake

    nbmake

    Pytest plugin for testing notebooks

    Pytest plugin for testing and releasing notebook documentation. To raise the quality of scientific material through better automation. Research/Machine Learning Software Engineers who maintain packages/teaching materials with documentation written in notebooks.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 24
    Flama

    Flama

    Fire up your models with the flame

    Flama is a python library which establishes a standard framework for development and deployment of APIs with special focus on machine learning (ML). The main aim of the framework is to make ridiculously simple the deployment of ML APIs, simplifying (when possible) the entire process to a single line of code. The library builds on Starlette, and provides an easy-to-learn philosophy to speed up the building of highly performant GraphQL, REST and ML APIs. Besides, it comprises an ideal solution for the development of asynchronous and production-ready services, offering automatic deployment for ML models.
    Downloads: 4 This Week
    Last Update:
    See Project
  • 25
    Robusta KRR

    Robusta KRR

    Prometheus-based Kubernetes Resource Recommendations

    Robusta KRR (Kubernetes Resource Recommender) is a CLI tool for optimizing resource allocation in Kubernetes clusters. It gathers pod usage data from Prometheus and recommends requests and limits for CPU and memory. This reduces costs and improves performance.
    Downloads: 0 This Week
    Last Update:
    See Project
MongoDB Logo MongoDB
Gen AI apps are built with MongoDB Atlas
Atlas offers built-in vector search and global availability across 125+ regions. Start building AI apps faster, all in one place.
Try Free →