Showing 288 open source projects for "machine"

View related business solutions
  • MongoDB Atlas runs apps anywhere Icon
    MongoDB Atlas runs apps anywhere

    Deploy in 115+ regions with the modern database for every enterprise.

    MongoDB Atlas gives you the freedom to build and run modern applications anywhere—across AWS, Azure, and Google Cloud. With global availability in over 115 regions, Atlas lets you deploy close to your users, meet compliance needs, and scale with confidence across any geography.
    Start Free
  • $300 in Free Credit for Your Google Cloud Projects Icon
    $300 in Free Credit for Your Google Cloud Projects

    Build, test, and explore on Google Cloud with $300 in free credit. No hidden charges. No surprise bills.

    Launch your next project with $300 in free Google Cloud credit—no hidden charges. Test, build, and deploy without risk. Use your credit across the Google Cloud platform to find what works best for your needs. After your credits are used, continue building with free monthly usage products. Only pay when you're ready to scale. Sign up in minutes and start exploring.
    Start Free Trial
  • 1
    IVY

    IVY

    The Unified Machine Learning Framework

    Take any code that you'd like to include. For example, an existing TensorFlow model, and some useful functions from both PyTorch and NumPy libraries. Choose any framework for writing your higher-level pipeline, including data loading, distributed training, analytics, logging, visualization etc. Choose any backend framework which should be used under the hood, for running this entire pipeline. Choose the most appropriate device or combination of devices for your needs. DeepMind releases an...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 2
    Kedro

    Kedro

    A Python framework for creating reproducible, maintainable code

    ...Makes a seamless transition from development to production, as you can write quick, throw-away exploratory code and transition to maintainable, easy-to-share, code experiments quickly. Puts the "engineering" back into data science because it borrows concepts from software engineering and applies them to machine-learning code. It is the foundation for clean, data science code.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 3
    Ray

    Ray

    A unified framework for scalable computing

    ...Deploy your machine learning models at scale with Ray Serve, a Python-first and framework agnostic model serving framework. Scale reinforcement learning (RL) with RLlib, a framework-agnostic RL library that ships with 30+ cutting-edge RL algorithms including A3C, DQN, and PPO. Easily build out scalable, distributed systems in Python with simple and composable primitives in Ray Core.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 4
    DeepSeed

    DeepSeed

    Deep learning optimization library making distributed training easy

    DeepSpeed is a deep learning optimization library that makes distributed training easy, efficient, and effective. DeepSpeed delivers extreme-scale model training for everyone, from data scientists training on massive supercomputers to those training on low-end clusters or even on a single GPU. Using current generation of GPU clusters with hundreds of devices, 3D parallelism of DeepSpeed can efficiently train deep learning models with trillions of parameters. With just a single GPU,...
    Downloads: 4 This Week
    Last Update:
    See Project
  • Managed MySQL, PostgreSQL, and SQL Databases on Google Cloud Icon
    Managed MySQL, PostgreSQL, and SQL Databases on Google Cloud

    Get back to your application and leave the database to us. Cloud SQL automatically handles backups, replication, and scaling.

    Cloud SQL is a fully managed relational database for MySQL, PostgreSQL, and SQL Server. We handle patching, backups, replication, encryption, and failover—so you can focus on your app. Migrate from on-prem or other clouds with free Database Migration Service. IDC found customers achieved 246% ROI. New customers get $300 in credits plus a 30-day free trial.
    Try Cloud SQL Free
  • 5
    LLM CLI

    LLM CLI

    Access large language models from the command-line

    A CLI utility and Python library for interacting with Large Language Models, both via remote APIs and models that can be installed and run on your own machine.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 6
    Awesome Fraud Detection Research Papers

    Awesome Fraud Detection Research Papers

    A curated list of data mining papers about fraud detection

    A curated list of data mining papers about fraud detection from several conferences.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 7
    Albumentations

    Albumentations

    Fast image augmentation library and an easy-to-use wrapper

    Albumentations is a computer vision tool that boosts the performance of deep convolutional neural networks. Albumentations is a Python library for fast and flexible image augmentations. Albumentations efficiently implements a rich variety of image transform operations that are optimized for performance, and does so while providing a concise, yet powerful image augmentation interface for different computer vision tasks, including object classification, segmentation, and detection....
    Downloads: 1 This Week
    Last Update:
    See Project
  • 8
    Stock prediction deep neural learning

    Stock prediction deep neural learning

    Predicting stock prices using a TensorFlow LSTM

    ...The fluctuations in stock prices are driven by the forces of supply and demand, which can be unpredictable at times. To identify patterns and trends in stock prices, deep learning techniques can be used for machine learning. Long short-term memory (LSTM) is a type of recurrent neural network (RNN) that is specifically designed for sequence modeling and prediction.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 9
    Numba

    Numba

    NumPy aware dynamic Python compiler using LLVM

    Numba is an open source JIT compiler that translates a subset of Python and NumPy code into fast machine code. Numba translates Python functions to optimized machine code at runtime using the industry-standard LLVM compiler library. Numba-compiled numerical algorithms in Python can approach the speeds of C or FORTRAN. You don't need to replace the Python interpreter, run a separate compilation step, or even have a C/C++ compiler installed.
    Downloads: 3 This Week
    Last Update:
    See Project
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • 10
    TorchQuantum

    TorchQuantum

    A PyTorch-based framework for Quantum Classical Simulation

    A PyTorch-based framework for Quantum Classical Simulation, Quantum Machine Learning, Quantum Neural Networks, Parameterized Quantum Circuits with support for easy deployments on real quantum computers. Researchers on quantum algorithm design, parameterized quantum circuit training, quantum optimal control, quantum machine learning, and quantum neural networks. Dynamic computation graph, automatic gradient computation, fast GPU support, batch model terrorized processing.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 11
    Darts

    Darts

    A python library for easy manipulation and forecasting of time series

    darts is a Python library for easy manipulation and forecasting of time series. It contains a variety of models, from classics such as ARIMA to deep neural networks. The models can all be used in the same way, using fit() and predict() functions, similar to scikit-learn. The library also makes it easy to backtest models, combine the predictions of several models, and take external data into account. Darts supports both univariate and multivariate time series and models. The ML-based models...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 12
    Public APIs

    Public APIs

    A collective list of free APIs

    ...Curated by community contributors and the team at APILayer, it serves as a centralized resource for discovering APIs across a wide range of domains, including data, machine learning, weather, entertainment, and finance. The project aims to make API exploration and integration more accessible by offering a single, organized index of open and free-to-use APIs. Developers can leverage this list to enhance their products, prototypes, or research projects without the need to build data sources from scratch. ...
    Downloads: 4 This Week
    Last Update:
    See Project
  • 13
    Docker-OSX

    Docker-OSX

    Run macOS VM in a Docker! Run near native OSX-KVM in Docker

    Run Mac OS X in Docker with near-native performance! X11 Forwarding. iMessage security research! iPhone USB working! macOS in a Docker container.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 14
    Deepchecks

    Deepchecks

    Test Suites for validating ML models & data

    Deepchecks is the leading tool for testing and for validating your machine learning models and data, and it enables doing so with minimal effort. Deepchecks accompany you through various validation and testing needs such as verifying your data’s integrity, inspecting its distributions, validating data splits, evaluating your model and comparing between different models. While you’re in the research phase, and want to validate your data, find potential methodological problems, and/or validate your model and evaluate it. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 15
    AIMET

    AIMET

    AIMET is a library that provides advanced quantization and compression

    ...For example, models that we’ve run on the Qualcomm® Hexagon™ DSP rather than on the Qualcomm® Kryo™ CPU have resulted in a 5x to 15x speedup. Plus, an 8-bit model also has a 4x smaller memory footprint relative to a 32-bit model. However, often when quantizing a machine learning model (e.g., from 32-bit floating point to an 8-bit fixed point value), the model accuracy is sacrificed.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 16
    DocTR

    DocTR

    Library for OCR-related tasks powered by Deep Learning

    DocTR provides an easy and powerful way to extract valuable information from your documents. Seemlessly process documents for Natural Language Understanding tasks: we provide OCR predictors to parse textual information (localize and identify each word) from your documents. Robust 2-stage (detection + recognition) OCR predictors with pretrained parameters. User-friendly, 3 lines of code to load a document and extract text with a predictor. State-of-the-art performances on public document...
    Downloads: 3 This Week
    Last Update:
    See Project
  • 17
    JumpServer

    JumpServer

    Manage assets on different clouds at the same time

    The JumpServer bastion machine complies with the 4A specification of operation and maintenance security audit. Zero threshold, fast online acquisition and installation. Just a browser, the ultimate Web Terminal experience. Easily support massive concurrent access. One system manages assets on different clouds at the same time. Audit recordings are stored in the cloud and will never be lost.
    Downloads: 16 This Week
    Last Update:
    See Project
  • 18
    Qiling

    Qiling

    Qiling Advanced Binary Emulation Framework

    ...The API-rich Qiling Framework brings reverse and instrument binary to the next level quicker. Additionally, Qiling provides API access to register, memory, filesystem, operating system and debugger. Qiling also provides virtual machine-level API such as save and restore execution state. It combines binary instrumentation and binary emulation into one single framework.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 19
    Shumai

    Shumai

    Fast Differentiable Tensor Library in JavaScript & TypeScript with Bun

    Shumai is an experimental differentiable tensor library for TypeScript and JavaScript, developed by Facebook Research. It provides a high-performance framework for numerical computing and machine learning within modern JavaScript runtimes. Built on Bun and Flashlight, with ArrayFire as its numerical backend, Shumai brings GPU-accelerated tensor operations, automatic differentiation, and scientific computing tools directly to JavaScript developers. It allows seamless integration of machine learning, deep learning, and custom differentiable programs into web-based or server-side environments without relying on Python frameworks. ...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 20
    Otter-Grader

    Otter-Grader

    A Python and R autograding solution

    ...Otter supports local grading through parallel Docker containers, grading using the autograder platforms of 3rd party learning management systems (LMSs), the deployment of an Otter-managed grading virtual machine, and a client package that allows students to run public checks on their own machines. Otter is designed to grade Python scripts and Jupyter Notebooks, and is compatible with a few different LMSs, including Canvas and Gradescope.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 21
    LocalStack

    LocalStack

    Develop and test your cloud apps offline

    LocalStack is a fully functional local AWS cloud stack that enables you to develop and test your cloud and serverless apps offline. It spins up an easy-to-use testing environment on your local machine that has the same APIs and works the same way as the real AWS cloud environment. It can spin up a number of different core Cloud APIs on your local machine, including API Gateway, Kinesis, DynamoDB, Firehose, Lambda and many others. LocalStack was built on some of today’s best-of-breed mocking/testing tools, combining them and making them interoperable, and adding important functionality such as error injection and pluggable services. ...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 22
    Imagen - Pytorch

    Imagen - Pytorch

    Implementation of Imagen, Google's Text-to-Image Neural Network

    Implementation of Imagen, Google's Text-to-Image Neural Network that beats DALL-E2, in Pytorch. It is the new SOTA for text-to-image synthesis. Architecturally, it is actually much simpler than DALL-E2. It consists of a cascading DDPM conditioned on text embeddings from a large pre-trained T5 model (attention network). It also contains dynamic clipping for improved classifier-free guidance, noise level conditioning, and a memory-efficient unit design. It appears neither CLIP nor prior...
    Downloads: 3 This Week
    Last Update:
    See Project
  • 23
    PyTensor

    PyTensor

    Python library for defining and optimizing mathematical expressions

    PyTensor is a fork of Aesara, a Python library for defining, optimizing, and efficiently evaluating mathematical expressions involving multi-dimensional arrays. PyTensor is based on Theano, which has been powering large-scale computationally intensive scientific investigations since 2007. A hackable, pure-Python codebase. Extensible graph framework is suitable for rapid development of custom operators and symbolic optimizations. Implements an extensible graph transpilation framework that...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 24
    Jittor

    Jittor

    Jittor is a high-performance deep learning framework

    Jittor is a high-performance deep learning framework based on JIT compiling and meta-operators. The whole framework and meta-operators are compiled just in time. A powerful op compiler and tuner are integrated into Jittor. It allowed us to generate high-performance code specialized for your model. Jittor also contains a wealth of high-performance model libraries, including image recognition, detection, segmentation, generation, differentiable rendering, geometric learning, reinforcement...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 25
    Synthetic Data Vault (SDV)

    Synthetic Data Vault (SDV)

    Synthetic Data Generation for tabular, relational and time series data

    The Synthetic Data Vault (SDV) is a Synthetic Data Generation ecosystem of libraries that allows users to easily learn single-table, multi-table and timeseries datasets to later on generate new Synthetic Data that has the same format and statistical properties as the original dataset. Synthetic data can then be used to supplement, augment and in some cases replace real data when training Machine Learning models. Additionally, it enables the testing of Machine Learning or other data dependent software systems without the risk of exposure that comes with data disclosure. Underneath the hood it uses several probabilistic graphical modeling and deep learning based techniques. To enable a variety of data storage structures, we employ unique hierarchical generative modeling and recursive sampling techniques.
    Downloads: 1 This Week
    Last Update:
    See Project
MongoDB Logo MongoDB
Gen AI apps are built with MongoDB Atlas
Atlas offers built-in vector search and global availability across 125+ regions. Start building AI apps faster, all in one place.
Try Free →