Showing 71 open source projects for "gpu"

View related business solutions
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • Run applications fast and securely in a fully managed environment Icon
    Run applications fast and securely in a fully managed environment

    Cloud Run is a fully-managed compute platform that lets you run your code in a container directly on top of scalable infrastructure.

    Run frontend and backend services, batch jobs, deploy websites and applications, and queue processing workloads without the need to manage infrastructure.
    Try for free
  • 1
    PyTorch Geometric

    PyTorch Geometric

    Geometric deep learning extension library for PyTorch

    ...We have outsourced a lot of functionality of PyTorch Geometric to other packages, which needs to be additionally installed. These packages come with their own CPU and GPU kernel implementations based on C++/CUDA extensions. We do not recommend installation as root user on your system python. Please setup an Anaconda/Miniconda environment or create a Docker image. We provide pip wheels for all major OS/PyTorch/CUDA combinations.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 2
    Multimodal

    Multimodal

    TorchMultimodal is a PyTorch library

    This project, also known as TorchMultimodal, is a PyTorch library for building, training, and experimenting with multimodal, multi-task models at scale. The library provides modular building blocks such as encoders, fusion modules, loss functions, and transformations that support combining modalities (vision, text, audio, etc.) in unified architectures. It includes a collection of ready model classes—like ALBEF, CLIP, BLIP-2, COCA, FLAVA, MDETR, and Omnivore—that serve as reference...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 3
    tvm

    tvm

    Open deep learning compiler stack for cpu, gpu, etc.

    Apache TVM is an open source machine learning compiler framework for CPUs, GPUs, and machine learning accelerators. It aims to enable machine learning engineers to optimize and run computations efficiently on any hardware backend. The vision of the Apache TVM Project is to host a diverse community of experts and practitioners in machine learning, compilers, and systems architecture to build an accessible, extensible, and automated open-source framework that optimizes current and emerging...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 4
    Glumpy

    Glumpy

    Python+Numpy+OpenGL, scalable and beautiful scientific visualization

    Glumpy is a Python library that simplifies the development of high-performance, interactive OpenGL visualizations. It abstracts complex OpenGL tasks into Pythonic constructs, making it easier for scientists, artists, and developers to harness the power of the GPU for real-time rendering and data visualization. Glumpy is particularly well-suited for rapid prototyping of graphical applications, and its integration with NumPy and shader programming makes it a powerful tool for both research and creative exploration.
    Downloads: 5 This Week
    Last Update:
    See Project
  • Free and Open Source HR Software Icon
    Free and Open Source HR Software

    OrangeHRM provides a world-class HRIS experience and offers everything you and your team need to be that HR hero you know that you are.

    Give your HR team the tools they need to streamline administrative tasks, support employees, and make informed decisions with the OrangeHRM free and open source HR software.
    Learn More
  • 5
    Transformers4Rec

    Transformers4Rec

    Transformers4Rec is a flexible and efficient library

    Transformers4Rec is an advanced recommendation system library that leverages Transformer models for sequential and session-based recommendations. The library works as a bridge between natural language processing (NLP) and recommender systems (RecSys) by integrating with one of the most popular NLP frameworks, Hugging Face Transformers (HF). Transformers4Rec makes state-of-the-art transformer architectures available for RecSys researchers and industry practitioners. Traditional recommendation...
    Downloads: 4 This Week
    Last Update:
    See Project
  • 6
    Lightweight' GAN

    Lightweight' GAN

    Implementation of 'lightweight' GAN, proposed in ICLR 2021

    ...The main contribution of the paper is a skip-layer excitation in the generator, paired with autoencoding self-supervised learning in the discriminator. Quoting the one-line summary "converge on single gpu with few hours' training, on 1024 resolution sub-hundred images". Augmentation is essential for Lightweight GAN to work effectively in a low data setting. You can test and see how your images will be augmented before they pass into a neural network (if you use augmentation). The general recommendation is to use suitable augs for your data and as many as possible, then after some time of training disable the most destructive (for image) augs. ...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 7
    Tunix

    Tunix

    A JAX-native LLM Post-Training Library

    Tunix is a JAX-native library for post-training large language models, bringing supervised fine-tuning, reinforcement learning–based alignment, and knowledge distillation into one coherent toolkit. It embraces JAX’s strengths—functional programming, jit compilation, and effortless multi-device execution—so experiments scale from a single GPU to pods of TPUs with minimal code changes. The library is organized around modular pipelines for data loading, rollout, optimization, and evaluation, letting practitioners swap components without rewriting the whole stack. Examples and reference configs demonstrate end-to-end runs for common model families, helping teams reproduce baselines before customizing. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 8
    PyG

    PyG

    Graph Neural Network Library for PyTorch

    ...It consists of various methods for deep learning on graphs and other irregular structures, also known as geometric deep learning, from a variety of published papers. In addition, it consists of easy-to-use mini-batch loaders for operating on many small and single giant graphs, multi GPU-support, DataPipe support, distributed graph learning via Quiver, a large number of common benchmark datasets (based on simple interfaces to create your own), the GraphGym experiment manager, and helpful transforms, both for learning on arbitrary graphs as well as on 3D meshes or point clouds. All it takes is 10-20 lines of code to get started with training a GNN model (see the next section for a quick tour).
    Downloads: 0 This Week
    Last Update:
    See Project
  • 9
    Petastorm

    Petastorm

    Petastorm library enables single machine or distributed training

    Petastorm library enables single machine or distributed training and evaluation of deep learning models from datasets in Apache Parquet format. It supports ML frameworks such as Tensorflow, Pytorch, and PySpark and can be used from pure Python code. Petastorm is an open-source data access library developed at Uber ATG. This library enables single machine or distributed training and evaluation of deep learning models directly from datasets in Apache Parquet format. Petastorm supports popular...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Venue management software for the growing attraction Icon
    Venue management software for the growing attraction

    ROLLER is an all-in-one, cloud-based venue management software solution built for attraction businesses.

    At ROLLER, we're passionate about empowering leisure and entertainment businesses to reach new heights of success. With a track record of serving 1,500+ customers across 25 countries, including some of the most renowned names in the attractions industry, including SkyZone, Altitude, American Dream, Uptown Jungle, Flip Out, WhoaZone, Oxygen, Innoflate, and Jumpsquare, we understand the unique needs of playcenters, family entertainment centers, wake parks, water parks, trampoline parks, theme parks, amusement parks, indoor climbing facilities, children's museums, zoos, aquariums and more.
    Learn More
  • 10
    DocArray

    DocArray

    The data structure for multimodal data

    ...Data science powerhouse: greatly accelerate data scientists’ work on embedding, k-NN matching, querying, visualizing, evaluating via Torch/TensorFlow/ONNX/PaddlePaddle on CPU/GPU. Data in transit: optimized for network communication, ready-to-wire at anytime with fast and compressed serialization in Protobuf, bytes, base64, JSON, CSV, DataFrame. Perfect for streaming and out-of-memory data. One-stop k-NN: Unified and consistent API for mainstream vector databases.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 11
    Lightly

    Lightly

    A python library for self-supervised learning on images

    A python library for self-supervised learning on images. We, at Lightly, are passionate engineers who want to make deep learning more efficient. That's why - together with our community - we want to popularize the use of self-supervised methods to understand and curate raw image data. Our solution can be applied before any data annotation step and the learned representations can be used to visualize and analyze datasets. This allows selecting the best core set of samples for model training...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 12
    Ray

    Ray

    A unified framework for scalable computing

    Modern workloads like deep learning and hyperparameter tuning are compute-intensive and require distributed or parallel execution. Ray makes it effortless to parallelize single machine code — go from a single CPU to multi-core, multi-GPU or multi-node with minimal code changes. Accelerate your PyTorch and Tensorflow workload with a more resource-efficient and flexible distributed execution framework powered by Ray. Accelerate your hyperparameter search workloads with Ray Tune. Find the best model and reduce training costs by using the latest optimization algorithms. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 13
    Neural Tangents

    Neural Tangents

    Fast and Easy Infinite Neural Networks in Python

    Neural Tangents is a high-level neural network API for specifying complex, hierarchical models at both finite and infinite width, built in Python on top of JAX and XLA. It lets researchers define architectures from familiar building blocks—convolutions, pooling, residual connections, and nonlinearities—and obtain not only the finite network but also the corresponding Gaussian Process (GP) kernel of its infinite-width limit. With a single specification, you can compute NNGP and NTK kernels,...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 14
    pipeless

    pipeless

    A computer vision framework to create and deploy apps in minutes

    ...You can easily use industry-standard models, such as YOLO, or load your custom model in one of the supported inference runtimes. Pipeless ships some of the most popular inference runtimes, such as the ONNX Runtime, allowing you to run inference with high performance on CPU or GPU out-of-the-box. You can deploy your Pipeless application with a single command to edge and IoT devices or the cloud.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 15
    Face Alignment

    Face Alignment

    2D and 3D Face alignment library build using pytorch

    ...However, the users can alternatively use dlib, BlazeFace, or pre-existing ground truth bounding boxes. While not required, for optimal performance(especially for the detector) it is highly recommended to run the code using a CUDA-enabled GPU. While here the work is presented as a black box, if you want to know more about the intrisecs of the method please check the original paper either on arxiv or my webpage.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 16
    Alphafold

    Alphafold

    Open source code for AlphaFold

    This package provides an implementation of the inference pipeline of AlphaFold v2.0. This is a completely new model that was entered in CASP14 and published in Nature. For simplicity, we refer to this model as AlphaFold throughout the rest of this document. Any publication that discloses findings arising from using this source code or the model parameters should cite the AlphaFold paper. Please also refer to the Supplementary Information for a detailed description of the method. You can use...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 17
    FairScale

    FairScale

    PyTorch extensions for high performance and large scale training

    ...FairScale puts emphasis on correctness and debuggability, offering hook points, logging, and reference examples for common trainer patterns. Although many ideas have since landed in core PyTorch, FairScale remains a valuable reference and a practical toolbox for squeezing more performance out of multi-GPU and multi-node jobs.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 18
    GFPGAN

    GFPGAN

    GFPGAN aims at developing Practical Algorithms

    ...Colab Demo for GFPGAN; (Another Colab Demo for the original paper model) Online demo: Huggingface (return only the cropped face) Online demo: Replicate.ai (may need to sign in, return the whole image). Online demo: Baseten.co (backed by GPU, returns the whole image). We provide a clean version of GFPGAN, which can run without CUDA extensions. So that it can run in Windows or on CPU mode. GFPGAN aims at developing a Practical Algorithm for Real-world Face Restoration. It leverages rich and diverse priors encapsulated in a pretrained face GAN (e.g., StyleGAN2) for blind face restoration. ...
    Downloads: 95 This Week
    Last Update:
    See Project
  • 19
    Fairseq

    Fairseq

    Facebook AI Research Sequence-to-Sequence Toolkit written in Python

    Fairseq(-py) is a sequence modeling toolkit that allows researchers and developers to train custom models for translation, summarization, language modeling and other text generation tasks. We provide reference implementations of various sequence modeling papers. Recent work by Microsoft and Google has shown that data parallel training can be made significantly more efficient by sharding the model parameters and optimizer state across data parallel workers. These ideas are encapsulated in the...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 20
    SageMaker MXNet Inference Toolkit

    SageMaker MXNet Inference Toolkit

    Toolkit for allowing inference and serving with MXNet in SageMaker

    ...AWS Deep Learning Containers (DLCs) are a set of Docker images for training and serving models in TensorFlow, TensorFlow 2, PyTorch, and MXNet. Deep Learning Containers provide optimized environments with TensorFlow and MXNet, Nvidia CUDA (for GPU instances), and Intel MKL (for CPU instances) libraries and are available in the Amazon Elastic Container Registry (Amazon ECR). The AWS DLCs are used in Amazon SageMaker as the default vehicles for your SageMaker jobs such as training, inference, transforms etc. They've been tested for machine learning workloads on Amazon EC2, Amazon ECS and Amazon EKS services as well.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 21
    Deep Daze

    Deep Daze

    Simple command line tool for text to image generation

    Simple command-line tool for text to image generation using OpenAI's CLIP and Siren (Implicit neural representation network). In true deep learning fashion, more layers will yield better results. Default is at 16, but can be increased to 32 depending on your resources. Technique first devised and shared by Mario Klingemann, it allows you to prime the generator network with a starting image, before being steered towards the text. Simply specify the path to the image you wish to use, and...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 22
    Big Sleep

    Big Sleep

    A simple command line tool for text to image generation

    ...Ryan Murdock has done it again, combining OpenAI's CLIP and the generator from a BigGAN! This repository wraps up his work so it is easily accessible to anyone who owns a GPU. You will be able to have the GAN dream-up images using natural language with a one-line command in the terminal. User-made notebook with bug fixes and added features, like google drive integration. Images will be saved to wherever the command is invoked. If you have enough memory, you can also try using a bigger vision model released by OpenAI for improved generations. ...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 23
    SVoice (Speech Voice Separation)

    SVoice (Speech Voice Separation)

    We provide a PyTorch implementation of the paper Voice Separation

    SVoice is a PyTorch-based implementation of Facebook Research’s study on speaker voice separation as described in the paper “Voice Separation with an Unknown Number of Multiple Speakers.” This project presents a deep learning framework capable of separating mixed audio sequences where several people speak simultaneously, without prior knowledge of how many speakers are present. The model employs gated neural networks with recurrent processing blocks that disentangle voices over multiple...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 24
    Detectron2

    Detectron2

    Next-generation platform for object detection and segmentation

    ...Models can be exported to TorchScript format or Caffe2 format for deployment. With a new, more modular design, Detectron2 is flexible and extensible, and able to provide fast training on single or multiple GPU servers. Detectron2 includes high-quality implementations of state-of-the-art object detection.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 25
    TensorNetwork

    TensorNetwork

    A library for easy and efficient manipulation of tensor networks

    TensorNetwork is a high-level library for building and contracting tensor networks—graphical factorizations of large tensors that underpin many algorithms in physics and machine learning. It abstracts networks as nodes and edges, then compiles efficient contraction orders across multiple numeric backends so users can focus on model structure rather than index bookkeeping. Common network families (MPS/TT, PEPS, MERA, tree networks) are expressed with concise APIs that encourage...
    Downloads: 0 This Week
    Last Update:
    See Project