Search Results for "artificial intelligence java source code" - Page 2

Showing 92 open source projects for "artificial intelligence java source code"

View related business solutions
  • Gen AI apps are built with MongoDB Atlas Icon
    Gen AI apps are built with MongoDB Atlas

    Build gen AI apps with an all-in-one modern database: MongoDB Atlas

    MongoDB Atlas provides built-in vector search and a flexible document model so developers can build, scale, and run gen AI apps without stitching together multiple databases. From LLM integration to semantic search, Atlas simplifies your AI architecture—and it’s free to get started.
    Start Free
  • Photo and Video Editing APIs and SDKs Icon
    Photo and Video Editing APIs and SDKs

    Trusted by 150 million+ creators and businesses globally

    Unlock Picsart's full editing suite by embedding our Editor SDK directly into your platform. Offer your users the power of a full design suite without leaving your site.
    Learn More
  • 1
    BentoML

    BentoML

    Unified Model Serving Framework

    BentoML simplifies ML model deployment and serves your models at a production scale. Support multiple ML frameworks natively: Tensorflow, PyTorch, XGBoost, Scikit-Learn and many more! Define custom serving pipeline with pre-processing, post-processing and ensemble models. Standard .bento format for packaging code, models and dependencies for easy versioning and deployment. Integrate with any training pipeline or ML experimentation platform. Parallelize compute-intense model inference workloads...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 2
    PyG

    PyG

    Graph Neural Network Library for PyTorch

    ... graph learning via Quiver, a large number of common benchmark datasets (based on simple interfaces to create your own), the GraphGym experiment manager, and helpful transforms, both for learning on arbitrary graphs as well as on 3D meshes or point clouds. All it takes is 10-20 lines of code to get started with training a GNN model (see the next section for a quick tour).
    Downloads: 0 This Week
    Last Update:
    See Project
  • 3
    SentenceTransformers

    SentenceTransformers

    Multilingual sentence & image embeddings with BERT

    .... The framework is based on PyTorch and Transformers and offers a large collection of pre-trained models tuned for various tasks. Further, it is easy to fine-tune your own models. Our models are evaluated extensively and achieve state-of-the-art performance on various tasks. Further, the code is tuned to provide the highest possible speed.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 4
    DeepSeed

    DeepSeed

    Deep learning optimization library making distributed training easy

    DeepSpeed is a deep learning optimization library that makes distributed training easy, efficient, and effective. DeepSpeed delivers extreme-scale model training for everyone, from data scientists training on massive supercomputers to those training on low-end clusters or even on a single GPU. Using current generation of GPU clusters with hundreds of devices, 3D parallelism of DeepSpeed can efficiently train deep learning models with trillions of parameters. With just a single GPU,...
    Downloads: 0 This Week
    Last Update:
    See Project
  • HR Onboarding Software Icon
    HR Onboarding Software

    WorkBright streamlines form collection to get your new team members on the job in a quick, compliant, and 100% remote process.

    WorkBright is a cloud-based new hire onboarding solution that provides assistance for the processing and induction of new employees before their first day on the job. Simple and easy-to-use, this paperless digital onboarding platform enables new employees to upload photos of relevant documents, fill out their W4s, capture signatures electronically, and complete all paperwork from their tablets, laptops, or smartphones. With WorkBright, organizations can seamlessly eliminate manual data entry, streamline the form correction workflow efficiently, deliver automated reminders, and more.
    Learn More
  • 5
    Opacus

    Opacus

    Training PyTorch models with differential privacy

    Opacus is a library that enables training PyTorch models with differential privacy. It supports training with minimal code changes required on the client, has little impact on training performance, and allows the client to online track the privacy budget expended at any given moment. Vectorized per-sample gradient computation that is 10x faster than micro batching. Supports most types of PyTorch models and can be used with minimal modification to the original neural network. Open source...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 6
    tvm

    tvm

    Open deep learning compiler stack for cpu, gpu, etc.

    Apache TVM is an open source machine learning compiler framework for CPUs, GPUs, and machine learning accelerators. It aims to enable machine learning engineers to optimize and run computations efficiently on any hardware backend. The vision of the Apache TVM Project is to host a diverse community of experts and practitioners in machine learning, compilers, and systems architecture to build an accessible, extensible, and automated open-source framework that optimizes current and emerging...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 7
    Django friendly finite state machine

    Django friendly finite state machine

    Django friendly finite state machine support

    Django-fsm adds simple declarative state management for Django models. If you need parallel task execution, view, and background task code reuse over different flows - check my new project Django-view flow. Instead of adding a state field to a Django model and managing its values by hand, you use FSMField and mark model methods with the transition decorator. These methods could contain side effects of the state change. You may also take a look at the Django-fsm-admin project containing a mixin...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 8
    SageMaker Training Toolkit

    SageMaker Training Toolkit

    Train machine learning models within Docker containers

    Train machine learning models within a Docker container using Amazon SageMaker. Amazon SageMaker is a fully managed service for data science and machine learning (ML) workflows. You can use Amazon SageMaker to simplify the process of building, training, and deploying ML models. To train a model, you can include your training script and dependencies in a Docker container that runs your training code. A container provides an effectively isolated environment, ensuring a consistent runtime...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 9
    TensorFlow Model Garden

    TensorFlow Model Garden

    Models and examples built with TensorFlow

    ... are suitable. A flexible and lightweight library that users can easily use or fork when writing customized training loop code in TensorFlow 2.x. It seamlessly integrates with tf.distribute and supports running on different device types (CPU, GPU, and TPU).
    Downloads: 0 This Week
    Last Update:
    See Project
  • Stigg | SaaS Monetization and Entitlements API Icon
    Stigg | SaaS Monetization and Entitlements API

    For developers in need of a tool to launch pricing plans faster and build better buying experiences

    A monetization platform is a standalone middleware that sits between your application and your business applications, as part of the modern enterprise billing stack. Stigg unifies all the APIs and abstractions billing and platform engineers had to build and maintain in-house otherwise. Acting as your centralized source of truth, with a highly scalable and flexible entitlements management, rolling out any pricing and packaging change is now a self-service, risk-free, exercise.
    Learn More
  • 10
    Stanza

    Stanza

    Stanford NLP Python library for many human languages

    Stanza is a collection of accurate and efficient tools for the linguistic analysis of many human languages. Starting from raw text to syntactic analysis and entity recognition, Stanza brings state-of-the-art NLP models to languages of your choosing. Stanza is a Python natural language analysis package. It contains tools, which can be used in a pipeline, to convert a string containing human language text into lists of sentences and words, to generate base forms of those words, their parts of...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 11
    LangChain Apps on Production with Jina

    LangChain Apps on Production with Jina

    Langchain Apps on Production with Jina & FastAPI

    Jina is an open-source framework for building scalable multi-modal AI apps on Production. LangChain is another open-source framework for building applications powered by LLMs. long-chain-serve helps you deploy your LangChain apps on Jina AI Cloud in a matter of seconds. You can benefit from the scalability and serverless architecture of the cloud without sacrificing the ease and convenience of local development. And if you prefer, you can also deploy your LangChain apps on your own...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 12
    Face Alignment

    Face Alignment

    2D and 3D Face alignment library build using pytorch

    ... dlib, BlazeFace, or pre-existing ground truth bounding boxes. While not required, for optimal performance(especially for the detector) it is highly recommended to run the code using a CUDA-enabled GPU. While here the work is presented as a black box, if you want to know more about the intrisecs of the method please check the original paper either on arxiv or my webpage.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 13
    Horovod

    Horovod

    Distributed training framework for TensorFlow, Keras, PyTorch, etc.

    Horovod was originally developed by Uber to make distributed deep learning fast and easy to use, bringing model training time down from days and weeks to hours and minutes. With Horovod, an existing training script can be scaled up to run on hundreds of GPUs in just a few lines of Python code. Horovod can be installed on-premise or run out-of-the-box in cloud platforms, including AWS, Azure, and Databricks. Horovod can additionally run on top of Apache Spark, making it possible to unify data...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 14
    Alpa

    Alpa

    Training and serving large-scale neural networks

    Alpa is a system for training and serving large-scale neural networks. Scaling neural networks to hundreds of billions of parameters has enabled dramatic breakthroughs such as GPT-3, but training and serving these large-scale neural networks require complicated distributed system techniques. Alpa aims to automate large-scale distributed training and serving with just a few lines of code.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 15

    FRODO 2

    Open-Source Framework for Distributed Constraint Optimization (DCOP)

    FRODO is a Java platform to solve Distributed Constraint Satisfaction Problems (DisCSPs) and Optimization Problems (DCOPs). It provides implementations for a variety of algorithms, including DPOP (and its variants), ADOPT, SynchBB, DSA...
    Downloads: 3 This Week
    Last Update:
    See Project
  • 16
    AI-Agent-Host

    AI-Agent-Host

    The AI Agent Host is a module-based development environment.

    The AI Agent Host integrates several advanced technologies and offers a unique combination of features for the development of language model-driven applications. The AI Agent Host is a module-based environment designed to facilitate rapid experimentation and testing. It includes a docker-compose configuration with QuestDB, Grafana, Code-Server and Nginx. The AI Agent Host provides a seamless interface for managing and querying data, visualizing results, and coding in real-time. The AI...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 17
    UnionML

    UnionML

    Build and deploy machine learning microservices

    ... learning methods, implement endpoints for fetching data, training models, serving predictions (and much more) to write a complete ML stack in one place. Data science, ML engineering, and MLOps practitioners can all gather around UnionML apps as a way of defining a single source of truth about your ML system’s behavior. This helps you maintain consistent code across your ML stack, from training to prediction logic.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 18
    Petastorm

    Petastorm

    Petastorm library enables single machine or distributed training

    Petastorm library enables single machine or distributed training and evaluation of deep learning models from datasets in Apache Parquet format. It supports ML frameworks such as Tensorflow, Pytorch, and PySpark and can be used from pure Python code. Petastorm is an open-source data access library developed at Uber ATG. This library enables single machine or distributed training and evaluation of deep learning models directly from datasets in Apache Parquet format. Petastorm supports popular...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 19
    PyTorch Transfer-Learning-Library

    PyTorch Transfer-Learning-Library

    Transfer Learning Library for Domain Adaptation, Task Adaptation, etc.

    TLlib is an open-source and well-documented library for Transfer Learning. It is based on pure PyTorch with high performance and friendly API. Our code is pythonic, and the design is consistent with torchvision. You can easily develop new algorithms or readily apply existing algorithms. We appreciate all contributions. If you are planning to contribute back bug-fixes, please do so without any further discussion. If you plan to contribute new features, utility functions or extensions, please...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 20
    Fairseq

    Fairseq

    Facebook AI Research Sequence-to-Sequence Toolkit written in Python

    Fairseq(-py) is a sequence modeling toolkit that allows researchers and developers to train custom models for translation, summarization, language modeling and other text generation tasks. We provide reference implementations of various sequence modeling papers. Recent work by Microsoft and Google has shown that data parallel training can be made significantly more efficient by sharding the model parameters and optimizer state across data parallel workers. These ideas are encapsulated in the...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 21
    Apache MXNet (incubating)

    Apache MXNet (incubating)

    A flexible and efficient library for deep learning

    Apache MXNet is an open source deep learning framework designed for efficient and flexible research prototyping and production. It contains a dynamic dependency scheduler that automatically parallelizes both symbolic and imperative operations. On top of this is a graph optimization layer, overall making MXNet highly efficient yet still portable, lightweight and scalable.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 22
    AWS Step Functions Data Science SDK

    AWS Step Functions Data Science SDK

    For building machine learning (ML) workflows and pipelines on AWS

    The AWS Step Functions Data Science SDK is an open-source library that allows data scientists to easily create workflows that process and publish machine learning models using Amazon SageMaker and AWS Step Functions. You can create machine learning workflows in Python that orchestrate AWS infrastructure at scale, without having to provision and integrate the AWS services separately. The best way to quickly review how the AWS Step Functions Data Science SDK works is to review the related example...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 23
    ReinventCommunity

    ReinventCommunity

    Jupyter Notebook tutorials for REINVENT 3.2

    This repository is a collection of useful jupyter notebooks, code snippets and example JSON files illustrating the use of Reinvent 3.2.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 24
    ML workspace

    ML workspace

    All-in-one web-based IDE specialized for machine learning

    All-in-one web-based development environment for machine learning. The ML workspace is an all-in-one web-based IDE specialized for machine learning and data science. It is simple to deploy and gets you started within minutes to productively built ML solutions on your own machines. This workspace is the ultimate tool for developers preloaded with a variety of popular data science libraries (e.g., Tensorflow, PyTorch, Keras, Sklearn) and dev tools (e.g., Jupyter, VS Code, Tensorboard) perfectly...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 25
    Opyrator

    Opyrator

    Turns your machine learning code into microservices with web API

    Instantly turn your Python functions into production-ready microservices. Deploy and access your services via HTTP API or interactive UI. Seamlessly export your services into portable, shareable, and executable files or Docker images. Opyrator builds on open standards - OpenAPI, JSON Schema, and Python type hints - and is powered by FastAPI, Streamlit, and Pydantic. It cuts out all the pain for productizing and sharing your Python code - or anything you can wrap into a single Python function...
    Downloads: 0 This Week
    Last Update:
    See Project
Want the latest updates on software, tech news, and AI?
Get latest updates about software, tech news, and AI from SourceForge directly in your inbox once a month.