Showing 2 open source projects for "freebasic math library"

View related business solutions
  • Run Any Workload on Compute Engine VMs Icon
    Run Any Workload on Compute Engine VMs

    From dev environments to AI training, choose preset or custom VMs with 1–96 vCPUs and industry-leading 99.95% uptime SLA.

    Compute Engine delivers high-performance virtual machines for web apps, databases, containers, and AI workloads. Choose from general-purpose, compute-optimized, or GPU/TPU-accelerated machine types—or build custom VMs to match your exact specs. With live migration and automatic failover, your workloads stay online. New customers get $300 in free credits.
    Try Compute Engine
  • MongoDB Atlas runs apps anywhere Icon
    MongoDB Atlas runs apps anywhere

    Deploy in 115+ regions with the modern database for every enterprise.

    MongoDB Atlas gives you the freedom to build and run modern applications anywhere—across AWS, Azure, and Google Cloud. With global availability in over 115 regions, Atlas lets you deploy close to your users, meet compliance needs, and scale with confidence across any geography.
    Start Free
  • 1
    FFTW.jl

    FFTW.jl

    Julia bindings to the FFTW library for fast Fourier transforms

    This package provides Julia bindings to the FFTW library for fast Fourier transforms (FFTs), as well as functionality useful for signal processing. These functions were formerly a part of Base Julia. Users with a build of Julia based on Intel's Math Kernel Library (MKL) can use MKL for FFTs by setting a preference in their top-level project by either using the FFTW.set_provider!() method, or by directly setting the preference using Preferences.jl.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 2
    Gen.jl

    Gen.jl

    A general-purpose probabilistic programming system

    An open-source stack for generative modeling and probabilistic inference. Gen’s inference library gives users building blocks for writing efficient probabilistic inference algorithms that are tailored to their models, while automating the tricky math and the low-level implementation details. Gen helps users write hybrid algorithms that combine neural networks, variational inference, sequential Monte Carlo samplers, and Markov chain Monte Carlo.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • Next
MongoDB Logo MongoDB