Open Source Julia Software Development Software

Julia Software Development Software

View 5717 business solutions

Browse free open source Julia Software Development Software and projects below. Use the toggles on the left to filter open source Julia Software Development Software by OS, license, language, programming language, and project status.

  • Simply solve complex auth. Easy for devs to set up. Easy for non-devs to use. Icon
    Simply solve complex auth. Easy for devs to set up. Easy for non-devs to use.

    Transform user access with Frontegg CIAM: login box, SSO, MFA, multi-tenancy, and 99.99% uptime.

    Custom auth drains 25% of dev time and risks 62% more breaches, stalling enterprise deals. Frontegg platform delivers a simple login box, seamless authentication (SSO, MFA, passwordless), robust multi-tenancy, and a customizable Admin Portal. Integrate fast with the React SDK, meet compliance needs, and focus on innovation.
    Start for Free
  • MongoDB Atlas runs apps anywhere Icon
    MongoDB Atlas runs apps anywhere

    Deploy in 115+ regions with the modern database for every enterprise.

    MongoDB Atlas gives you the freedom to build and run modern applications anywhere—across AWS, Azure, and Google Cloud. With global availability in over 115 regions, Atlas lets you deploy close to your users, meet compliance needs, and scale with confidence across any geography.
    Start Free
  • 1
    AlphaZero.jl

    AlphaZero.jl

    A generic, simple and fast implementation of Deepmind's AlphaZero

    Beyond its much publicized success in attaining superhuman level at games such as Chess and Go, DeepMind's AlphaZero algorithm illustrates a more general methodology of combining learning and search to explore large combinatorial spaces effectively. We believe that this methodology can have exciting applications in many different research areas. Because AlphaZero is resource-hungry, successful open-source implementations (such as Leela Zero) are written in low-level languages (such as C++) and optimized for highly distributed computing environments. This makes them hardly accessible for students, researchers and hackers. Many simple Python implementations can be found on Github, but none of them is able to beat a reasonable baseline on games such as Othello or Connect Four. As an illustration, the benchmark in the README of the most popular of them only features a random baseline, along with a greedy baseline that does not appear to be significantly stronger.
    Downloads: 28 This Week
    Last Update:
    See Project
  • 2
    DynamicalSystems.jl

    DynamicalSystems.jl

    Award winning software library for nonlinear dynamics timeseries

    DynamicalSystems.jl is an award-winning Julia software library for nonlinear dynamics and nonlinear time series analysis. To install DynamicalSystems.jl, run import Pkg; Pkg.add("DynamicalSystems"). To learn how to use it and see its contents visit the documentation, which you can either find online or build locally by running the docs/make.jl file. DynamicalSystems.jl is part of JuliaDynamics, an organization dedicated to creating high-quality scientific software. All implemented algorithms provide a high-level scientific description of their functionality in their documentation string as well as references to scientific papers. The documentation features hundreds of tutorials and examples ranging from introductory to expert usage.
    Downloads: 7 This Week
    Last Update:
    See Project
  • 3
    The Julia Programming Language

    The Julia Programming Language

    High-level, high-performance dynamic language for technical computing

    Julia is a fast, open source high-performance dynamic language for technical computing. It can be used for data visualization and plotting, deep learning, machine learning, scientific computing, parallel computing and so much more. Having a high level syntax, Julia is easy to use for programmers of every level and background. Julia has more than 2,800 community-registered packages including various mathematical libraries, data manipulation tools, and packages for general purpose computing. Libraries from Python, R, C/Fortran, C++, and Java can also be used.
    Downloads: 4 This Week
    Last Update:
    See Project
  • 4
    Clapeyron

    Clapeyron

    Framework for the development and use of fluid-thermodynamic models

    Welcome to Clapeyron! This module provides both a large library of thermodynamic models and a framework for one to easily implement their own models. Clapeyron provides a framework for the development and use of fluid-thermodynamic models, including SAFT, cubic, activity, multi-parameter, and COSMO-SAC.
    Downloads: 3 This Week
    Last Update:
    See Project
  • Sales CRM and Pipeline Management Software | Pipedrive Icon
    Sales CRM and Pipeline Management Software | Pipedrive

    The easy and effective CRM for closing deals

    Pipedrive’s simple interface empowers salespeople to streamline workflows and unite sales tasks in one workspace. Unlock instant sales insights with Pipedrive’s visual sales pipeline and fine-tune your strategy with robust reporting features and a personalized AI Sales Assistant.
    Try it for free
  • 5
    FFTW.jl

    FFTW.jl

    Julia bindings to the FFTW library for fast Fourier transforms

    This package provides Julia bindings to the FFTW library for fast Fourier transforms (FFTs), as well as functionality useful for signal processing. These functions were formerly a part of Base Julia. Users with a build of Julia based on Intel's Math Kernel Library (MKL) can use MKL for FFTs by setting a preference in their top-level project by either using the FFTW.set_provider!() method, or by directly setting the preference using Preferences.jl. Note that this choice will be recorded for the current project, and other projects that wish to use MKL for FFTs should also set that same preference. Note further that MKL provides only a subset of the functionality provided by FFTW.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 6
    ModelingToolkit.jl

    ModelingToolkit.jl

    Modeling framework for automatically parallelized scientific ML

    ModelingToolkit.jl is a modeling language for high-performance symbolic-numeric computation in scientific computing and scientific machine learning. It then mixes ideas from symbolic computational algebra systems with causal and acausal equation-based modeling frameworks to give an extendable and parallel modeling system. It allows for users to give a high-level description of a model for symbolic preprocessing to analyze and enhance the model. Automatic symbolic transformations, such as index reduction of differential-algebraic equations, make it possible to solve equations that are impossible to solve with a purely numeric-based technique. ModelingToolkit.jl is a symbolic-numeric modeling package. Thus it combines some of the features from symbolic computing packages like SymPy or Mathematica with the ideas of equation-based modeling systems like the causal Simulink and the acausal Modelica.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 7
    Interpolations.jl

    Interpolations.jl

    Fast, continuous interpolation of discrete datasets in Julia

    This package implements a variety of interpolation schemes for the Julia language. It has the goals of ease of use, broad algorithmic support, and exceptional performance. Currently, this package supports B-splines and irregular grids. The API has been designed with the intent to support more options. Initial support for Lanczos interpolation was recently added. Pull requests are more than welcome! It should be noted that the API may continue to evolve over time.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 8
    ProgressMeter.jl

    ProgressMeter.jl

    Progress meter for long-running computations

    ProgressMeter.jl is a lightweight Julia package that provides customizable progress bars for long-running loops and computations. It allows developers to track the progress of tasks with real-time visual feedback in the terminal, making it easier to monitor performance, debug slow operations, or report computational progress in user-facing applications.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 9
    GLM.jl

    GLM.jl

    Generalized linear models in Julia

    GLM.jl is a Julia package for fitting linear and generalized linear models using formula-based or matrix-based APIs, enabling users to specify model families and link functions (e.g., logistic, Poisson) for statistical modeling workflows.
    Downloads: 1 This Week
    Last Update:
    See Project
  • Test your software product anywhere in the world Icon
    Test your software product anywhere in the world

    Get feedback from real people across 190+ countries with the devices, environments, and payment instruments you need for your perfect test.

    Global App Testing is a managed pool of freelancers used by Google, Meta, Microsoft, and other world-beating software companies.
    Try us today.
  • 10
    Genie.jl

    Genie.jl

    The highly productive Julia web framework

    Genie Framework includes all you need to quickly build production-ready web applications with Julia. Develop Julia backends, create beautiful web UIs, build data applications and dashboards, integrate with databases and set up high-performance web services and APIs. Genie Builder is a free VSCode plugin for quickly building Julia apps without writing frontend code. Drag and drop UI components such as text, sliders, plots, and data tables onto a canvas, and connect them to the variables in the backend code. Genie.jl is the backbone of Genie Framework: the complete solution for developing modern full-stack web applications in Julia. Genie.jl includes key features like the webserver, the flexible templating engine with support for HTML, JSON, Markdown, and Julia views, caching, (encrypted) cookies and sessions, forms handling, and the powerful router. Genie.jl uses the familiar MVC architecture, follows industry best practices, and comes with lots of useful code generators.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 11
    GeoStats.jl

    GeoStats.jl

    An extensible framework for geospatial data science

    GeoStats.jl is an extensible, Julia-based framework for geospatial data science and geostatistical modeling, offering advanced geometric processing, spatial algorithms, and visualization tools tailored for geographic analysis.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 12
    MLJBase.jl

    MLJBase.jl

    Core functionality for the MLJ machine learning framework

    Repository for developers that provides core functionality for the MLJ machine learning framework. MLJ is a Julia framework for combining and tuning machine learning models. This repository provides core functionality for MLJ.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 13
    Metatheory.jl

    Metatheory.jl

    General purpose algebraic metaprogramming

    Metatheory.jl is a general purpose term rewriting, metaprogramming and algebraic computation library for the Julia programming language, designed to take advantage of the powerful reflection capabilities to bridge the gap between symbolic mathematics, abstract interpretation, equational reasoning, optimization, composable compiler transforms, and advanced homoiconic pattern matching features. The core features of Metatheory.jl are a powerful rewrite rule definition language, a vast library of functional combinators for classical term rewriting and an e-graph rewriting, a fresh approach to term rewriting achieved through an equality saturation algorithm. Metatheory.jl can manipulate any kind of Julia symbolic expression type, as long as it satisfies the TermInterface.jl.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 14
    Mocha.jl

    Mocha.jl

    Deep Learning framework for Julia

    Mocha.jl is a deep learning framework for Julia, inspired by the C++ Caffe framework. It offers efficient implementations of gradient descent solvers and common neural network layers, supports optional unsupervised pre-training, and allows switching to a GPU backend for accelerated performance.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 15
    PackageCompiler

    PackageCompiler

    Compile your Julia Package

    Julia is, in general, a "just-barely-ahead-of-time" compiled language. When you call a function for the first time, Julia compiles it for precisely the types of arguments given. This can take some time. All subsequent calls within that same session use this fast compiled function, but if you restart Julia you lose all the compiled work. PackageCompiler allows you to do this work upfront — further ahead of time — and store the results for a lower latency startup. You can save loaded packages and compiled functions into a file (called a sysimage) that you pass to Julia upon startup. Typically the goal is to reduce latency on your machine; for example, you could load the packages and compile the functions used in common plotting workflows using that saved image by default. In general, sysimages are not relocatable to other machines; they'll only work on the machine they were created on.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 16
    QML

    QML

    Build Qt6 QML interfaces for Julia programs

    This package provides an interface to Qt6 QML (and to Qt5 for older versions). It uses the CxxWrap package to expose C++ classes. Current functionality allows interaction between QML and Julia using Observables, JuliaItemModels and function calling. There is also a generic Julia display, as well as specialized integration for image drawing, GR plots and Makie.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 17
    QuantumOptics.jl

    QuantumOptics.jl

    Library for the numerical simulation of closed as well as open quantum

    QuantumOptics.jl is a numerical framework written in the Julia programming language that makes it easy to simulate various kinds of open quantum systems. It is inspired by the Quantum Optics Toolbox for MATLAB and the Python framework QuTiP. QuantumOptics.jl optimizes processor usage and memory consumption by relying on different ways to store and work with operators. The framework comes with a plethora of pre-defined systems and interactions making it very easy to focus on the physics, not on the numerics. Every function in the framework has been severely tested with all tests and their code coverage presented on the framework's GitHub page.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 18
    StaticArrays.jl

    StaticArrays.jl

    Statically sized arrays for Julia

    StaticArrays.jl is a Julia package that provides statically sized arrays with fast, stack-allocated memory storage and optimized performance for small array computations. It is particularly useful in numerical computing where small fixed-size matrices or vectors are used frequently, such as in robotics, physics simulations, or linear algebra. StaticArrays eliminate dynamic memory allocation overhead and enable compile-time optimizations for performance close to hand-written loops.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 19
    StructuralEquationModels.jl

    StructuralEquationModels.jl

    A fast and flexible Structural Equation Modelling Framework

    This is a package for Structural Equation Modeling in development. It is written for extensibility, that is, you can easily define your own objective functions and other parts of the model. At the same time, it is (very) fast. We provide fast objective functions, gradients, and for some cases hessians as well as approximations thereof. As a user, you can easily define custom loss functions. For those, you can decide to provide analytical gradients or use finite difference approximation / automatic differentiation. You can choose to mix loss functions natively found in this package and those you provide. In such cases, you optimize over a sum of different objectives (e.g. ML + Ridge). This strategy also applies to gradients, where you may supply analytic gradients or opt for automatic differentiation or mixed analytical and automatic differentiation. You may consider using this package if you need extensibility and/or speed, and if you want to extend SEM.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 20
    SymbolicUtils.jl

    SymbolicUtils.jl

    Symbolic expressions, rewriting and simplification

    SymbolicUtils is a practical symbolic programming utility in Julia. It lets you create, rewrite and simplify symbolic expressions, and generate Julia code from them. SymbolicUtils.jl provides various utilities for symbolic computing. SymbolicUtils.jl is what one would use to build a Computer Algebra System (CAS). If you're looking for a complete CAS, similar to SymPy or Mathematica, see Symbolics.jl. If you want to build a crazy CAS for your weird Octonian algebras, you've come to the right place. Symbols in SymbolicUtils carry type information. Operations on them propagate this information. A rule-based rewriting language can be used to find subexpressions that satisfy arbitrary conditions and apply arbitrary transformations on the matches. The library also contains a set of useful simplification rules for expressions of numeric symbols and numbers. These can be remixed and extended for special purposes.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 21
    Trixi.jl

    Trixi.jl

    Trixi.jl: Adaptive high-order numerical simulations of hyperbolic PDEs

    Trixi.jl is a numerical simulation framework for hyperbolic conservation laws written in Julia. A key objective for the framework is to be useful to both scientists and students. Therefore, next to having an extensible design with a fast implementation, Trixi.jl is focused on being easy to use for new or inexperienced users, including the installation and postprocessing procedures.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 22
    AI-Agent-Host

    AI-Agent-Host

    The AI Agent Host is a module-based development environment.

    The AI Agent Host integrates several advanced technologies and offers a unique combination of features for the development of language model-driven applications. The AI Agent Host is a module-based environment designed to facilitate rapid experimentation and testing. It includes a docker-compose configuration with QuestDB, Grafana, Code-Server and Nginx. The AI Agent Host provides a seamless interface for managing and querying data, visualizing results, and coding in real-time. The AI Agent Host is built specifically for LangChain, a framework dedicated to developing applications powered by language models. LangChain recognizes that the most powerful and distinctive applications go beyond simply utilizing a language model and strive to be data-aware and agentic. Being data-aware involves connecting a language model to other sources of data, enabling a comprehensive understanding and analysis of information.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 23
    AbstractFFTs.jl

    AbstractFFTs.jl

    A Julia framework for implementing FFTs

    A general framework for fast Fourier transforms (FFTs) in Julia. This package is mainly not intended to be used directly. Instead, developers of packages that implement FFTs (such as FFTW.jl or FastTransforms.jl) extend the types/functions defined in AbstractFFTs. This allows multiple FFT packages to co-exist with the same underlying fft(x) and plan_fft(x) interface.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 24
    Agents.jl

    Agents.jl

    Agent-based modeling framework in Julia

    Agents.jl is a pure Julia framework for agent-based modeling (ABM): a computational simulation methodology where autonomous agents react to their environment (including other agents) given a predefined set of rules. The simplicity of Agents.jl is due to the intuitive space-agnostic modeling approach we have implemented: agent actions are specified using generically named functions (such as "move agent" or "find nearby agents") that do not depend on the actual space the agents exist in, nor on the properties of the agents themselves. Overall this leads to ultra-fast model prototyping where even changing the space the agents live in is a matter of only a couple of lines of code.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 25
    AppleAccelerate.jl

    AppleAccelerate.jl

    Julia interface to the macOS Accelerate framework

    Julia interface to the macOS Accelerate framework. This provides a Julia interface to some of the macOS Accelerate frameworks. At the moment, this package provides access to Accelerate BLAS and LAPACK using the libblastrampoline framework, an interface to the array-oriented functions, which provide a vectorized form for many common mathematical functions. The performance is significantly better than using standard libm functions in some cases, though there does appear to be some reduced accuracy.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • 2
  • 3
  • Next
Want the latest updates on software, tech news, and AI?
Get latest updates about software, tech news, and AI from SourceForge directly in your inbox once a month.