Open Source Julia Software Development Software

Julia Software Development Software

View 5732 business solutions

Browse free open source Julia Software Development Software and projects below. Use the toggles on the left to filter open source Julia Software Development Software by OS, license, language, programming language, and project status.

  • Gen AI apps are built with MongoDB Atlas Icon
    Gen AI apps are built with MongoDB Atlas

    Build gen AI apps with an all-in-one modern database: MongoDB Atlas

    MongoDB Atlas provides built-in vector search and a flexible document model so developers can build, scale, and run gen AI apps without stitching together multiple databases. From LLM integration to semantic search, Atlas simplifies your AI architecture—and it’s free to get started.
    Start Free
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • 1
    AlphaZero.jl

    AlphaZero.jl

    A generic, simple and fast implementation of Deepmind's AlphaZero

    Beyond its much publicized success in attaining superhuman level at games such as Chess and Go, DeepMind's AlphaZero algorithm illustrates a more general methodology of combining learning and search to explore large combinatorial spaces effectively. We believe that this methodology can have exciting applications in many different research areas. Because AlphaZero is resource-hungry, successful open-source implementations (such as Leela Zero) are written in low-level languages (such as C++) and optimized for highly distributed computing environments. This makes them hardly accessible for students, researchers and hackers. Many simple Python implementations can be found on Github, but none of them is able to beat a reasonable baseline on games such as Othello or Connect Four. As an illustration, the benchmark in the README of the most popular of them only features a random baseline, along with a greedy baseline that does not appear to be significantly stronger.
    Downloads: 15 This Week
    Last Update:
    See Project
  • 2
    QML

    QML

    Build Qt6 QML interfaces for Julia programs

    This package provides an interface to Qt6 QML (and to Qt5 for older versions). It uses the CxxWrap package to expose C++ classes. Current functionality allows interaction between QML and Julia using Observables, JuliaItemModels and function calling. There is also a generic Julia display, as well as specialized integration for image drawing, GR plots and Makie.
    Downloads: 15 This Week
    Last Update:
    See Project
  • 3
    Vim Codefmt

    Vim Codefmt

    Vim plugin for syntax-aware code formatting

    vim-codefmt is a syntax-aware code formatting plugin for Vim that provides a unified interface to many best-in-class formatters across languages. It exposes simple commands to format either a selected range or an entire buffer, and integrates cleanly into everyday editing workflows. The plugin ships with a registry of built-in formatters and a pluggable architecture, allowing other plugins to register additional formatters without friction. Configuration is handled through maktaba and Glaive flags, so you can choose per-filetype tools, pass custom options, or point to specific formatter executables. Autoformat can be enabled via standard Vim autocommands, making it easy to format on filetype or on write while still allowing opt-out on a per-buffer basis. With broad language coverage—from C, C++, Java, Python, and Go to Kotlin, Rust, Swift, Bazel, Markdown, and more—vim-codefmt helps teams maintain consistent style across heterogeneous codebases.
    Downloads: 8 This Week
    Last Update:
    See Project
  • 4
    Genie.jl

    Genie.jl

    The highly productive Julia web framework

    Genie Framework includes all you need to quickly build production-ready web applications with Julia. Develop Julia backends, create beautiful web UIs, build data applications and dashboards, integrate with databases and set up high-performance web services and APIs. Genie Builder is a free VSCode plugin for quickly building Julia apps without writing frontend code. Drag and drop UI components such as text, sliders, plots, and data tables onto a canvas, and connect them to the variables in the backend code. Genie.jl is the backbone of Genie Framework: the complete solution for developing modern full-stack web applications in Julia. Genie.jl includes key features like the webserver, the flexible templating engine with support for HTML, JSON, Markdown, and Julia views, caching, (encrypted) cookies and sessions, forms handling, and the powerful router. Genie.jl uses the familiar MVC architecture, follows industry best practices, and comes with lots of useful code generators.
    Downloads: 6 This Week
    Last Update:
    See Project
  • Build Securely on AWS with Proven Frameworks Icon
    Build Securely on AWS with Proven Frameworks

    Lay a foundation for success with Tested Reference Architectures developed by Fortinet’s experts. Learn more in this white paper.

    Moving to the cloud brings new challenges. How can you manage a larger attack surface while ensuring great network performance? Turn to Fortinet’s Tested Reference Architectures, blueprints for designing and securing cloud environments built by cybersecurity experts. Learn more and explore use cases in this white paper.
    Download Now
  • 5
    Combinatorics.jl

    Combinatorics.jl

    A combinatorics library for Julia

    A combinatorics library for Julia, focusing mostly (as of now) on enumerative combinatorics and permutations. As overflows are expected even for low values, most of the functions always return BigInt, and are marked as such.
    Downloads: 5 This Week
    Last Update:
    See Project
  • 6
    DynamicalSystems.jl

    DynamicalSystems.jl

    Award winning software library for nonlinear dynamics timeseries

    DynamicalSystems.jl is an award-winning Julia software library for nonlinear dynamics and nonlinear time series analysis. To install DynamicalSystems.jl, run import Pkg; Pkg.add("DynamicalSystems"). To learn how to use it and see its contents visit the documentation, which you can either find online or build locally by running the docs/make.jl file. DynamicalSystems.jl is part of JuliaDynamics, an organization dedicated to creating high-quality scientific software. All implemented algorithms provide a high-level scientific description of their functionality in their documentation string as well as references to scientific papers. The documentation features hundreds of tutorials and examples ranging from introductory to expert usage.
    Downloads: 4 This Week
    Last Update:
    See Project
  • 7
    Clapeyron

    Clapeyron

    Framework for the development and use of fluid-thermodynamic models

    Welcome to Clapeyron! This module provides both a large library of thermodynamic models and a framework for one to easily implement their own models. Clapeyron provides a framework for the development and use of fluid-thermodynamic models, including SAFT, cubic, activity, multi-parameter, and COSMO-SAC.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 8
    Gen.jl

    Gen.jl

    A general-purpose probabilistic programming system

    An open-source stack for generative modeling and probabilistic inference. Gen’s inference library gives users building blocks for writing efficient probabilistic inference algorithms that are tailored to their models, while automating the tricky math and the low-level implementation details. Gen helps users write hybrid algorithms that combine neural networks, variational inference, sequential Monte Carlo samplers, and Markov chain Monte Carlo. Gen features an easy-to-use modeling language for writing down generative models, inference models, variational families, and proposal distributions using ordinary code. But it also lets users migrate parts of their model or inference algorithm to specialized modeling languages for which it can generate especially fast code. Users can also hand-code parts of their models that demand better performance. Neural network inference is fast, but can be inaccurate on out-of-distribution data, and requires expensive training.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 9
    IntervalArithmetic.jl

    IntervalArithmetic.jl

    Library for validated numerics using interval arithmetic

    IntervalArithmetic.jl is a Julia package for validated numerics in Julia. All calculations are carried out using interval arithmetic where quantities are treated as intervals. The final result is a rigorous enclosure of the true value. We are working towards having the IntervalArithmetic library be conformant with the IEEE 1788-2015 Standard for Interval Arithmetic. To do so, we have incorporated tests from the ITF1788 test suite.
    Downloads: 3 This Week
    Last Update:
    See Project
  • Build Securely on Azure with Proven Frameworks Icon
    Build Securely on Azure with Proven Frameworks

    Lay a foundation for success with Tested Reference Architectures developed by Fortinet’s experts. Learn more in this white paper.

    Moving to the cloud brings new challenges. How can you manage a larger attack surface while ensuring great network performance? Turn to Fortinet’s Tested Reference Architectures, blueprints for designing and securing cloud environments built by cybersecurity experts. Learn more and explore use cases in this white paper.
    Download Now
  • 10
    Manifolds.jl

    Manifolds.jl

    Manifolds.jl provides a library of manifolds

    Package Manifolds.jl aims to provide both a unified interface to define and use manifolds as well as a library of manifolds to use for your projects. This package is mostly stable, see #438 for planned upcoming changes. The implemented manifolds are accompanied by their mathematical formulae. The manifolds are implemented using the interface for manifolds given in ManifoldsBase.jl. You can use that interface to implement your own software on manifolds, such that all manifolds based on that interface can be used within your code.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 11
    SymbolicUtils.jl

    SymbolicUtils.jl

    Symbolic expressions, rewriting and simplification

    SymbolicUtils is a practical symbolic programming utility in Julia. It lets you create, rewrite and simplify symbolic expressions, and generate Julia code from them. SymbolicUtils.jl provides various utilities for symbolic computing. SymbolicUtils.jl is what one would use to build a Computer Algebra System (CAS). If you're looking for a complete CAS, similar to SymPy or Mathematica, see Symbolics.jl. If you want to build a crazy CAS for your weird Octonian algebras, you've come to the right place. Symbols in SymbolicUtils carry type information. Operations on them propagate this information. A rule-based rewriting language can be used to find subexpressions that satisfy arbitrary conditions and apply arbitrary transformations on the matches. The library also contains a set of useful simplification rules for expressions of numeric symbols and numbers. These can be remixed and extended for special purposes.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 12
    Catlab.jl

    Catlab.jl

    A framework for applied category theory in the Julia language

    Catlab.jl is a framework for applied and computational category theory, written in the Julia language. Catlab provides a programming library and interactive interface for applications of category theory to scientific and engineering fields. It emphasizes monoidal categories due to their wide applicability but can support any categorical structure that is formalizable as a generalized algebraic theory. First and foremost, Catlab provides data structures, algorithms, and serialization for applied category theory. Macros offer a convenient syntax for specifying categorical doctrines and type-safe symbolic manipulation systems. Wiring diagrams (aka string diagrams) are supported through specialized data structures and can be serialized to and from GraphML (an XML-based format) and JSON.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 13
    Documenter.jl

    Documenter.jl

    A documentation generator for Julia

    A documentation generator for Julia. A package for building documentation from docstrings and markdown files.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 14
    GeoStats.jl

    GeoStats.jl

    An extensible framework for geospatial data science

    GeoStats.jl is a Julia framework for geospatial data science and geostatistical modeling. It’s fully implemented in Julia and designed to provide an extensible, high-performance stack that handles spatial domains, interpolation, simulation, learning, and visualization. The package is modular: it breaks out geometry, spatial domains, transforms, variograms, covariance models, and modeling into subpackages (e.g., GeoStatsBase, GeoStatsModels, GeoStatsTransforms). Users can represent georeferenced tables (points + attributes), define domains (grids, meshes, structured/unstructured), and then apply geostatistical operations such as kriging, interpolation, simulation, variogram estimation, and learning-based prediction. Visualization is supported via integration with Makie.jl to produce spatial renderings, mesh visualizations, and variable overlays.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 15
    HTTP.jl

    HTTP.jl

    HTTP for Julia

    HTTP.jl is a pure Julia implementation of the HTTP protocol, providing tools for building HTTP clients and servers. It enables users to send requests, handle responses, and construct REST APIs or web services entirely in Julia. HTTP.jl supports TLS, cookies, headers, streaming, and middleware, making it suitable for both simple scripting and full-scale web service development.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 16
    InvertibleNetworks.jl

    InvertibleNetworks.jl

    A Julia framework for invertible neural networks

    Building blocks for invertible neural networks in the Julia programming language.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 17
    Knet

    Knet

    Koç University deep learning framework

    Knet.jl is a deep learning package implemented in Julia, so you should be able to run it on any machine that can run Julia. It has been extensively tested on Linux machines with NVIDIA GPUs and CUDA libraries, and it has been reported to work on OSX and Windows. If you would like to try it on your own computer, please follow the instructions on Installation. If you would like to try working with a GPU and do not have access to one, take a look at Using Amazon AWS or Using Microsoft Azure. If you find a bug, please open a GitHub issue. If you don't have access to a GPU machine, but would like to experiment with one, Amazon Web Services is a possible solution. I have prepared a machine image (AMI) with everything you need to run Knet. Here are step-by-step instructions for launching a GPU instance with a Knet image (the screens may have changed slightly since this writing).
    Downloads: 2 This Week
    Last Update:
    See Project
  • 18
    LoopVectorization.jl

    LoopVectorization.jl

    Macro(s) for vectorizing loops

    LoopVectorization.jl is a Julia package for accelerating numerical loops by automatically applying SIMD (Single Instruction, Multiple Data) vectorization and other low-level optimizations. It analyzes loops and generates highly efficient code that leverages CPU vector instructions, making it ideal for performance-critical computing in fields such as scientific computing, signal processing, and machine learning.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 19
    MLJ

    MLJ

    A Julia machine learning framework

    MLJ (Machine Learning in Julia) is a toolbox written in Julia providing a common interface and meta-algorithms for selecting, tuning, evaluating, composing and comparing about 200 machine learning models written in Julia and other languages. The functionality of MLJ is distributed over several repositories illustrated in the dependency chart below. These repositories live at the JuliaAI umbrella organization.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 20
    Measurements.jl

    Measurements.jl

    Error propagation calculator and library for physical measurements

    Error propagation calculator and library for physical measurements. It supports real and complex numbers with uncertainty, arbitrary precision calculations, operations with arrays, and numerical integration. Physical measures are typically reported with an error, a quantification of the uncertainty of the accuracy of the measurement. Whenever you perform mathematical operations involving these quantities you have also to propagate the uncertainty, so that the resulting number will also have an attached error to quantify the confidence about its accuracy. Measurements.jl relieves you from the hassle of propagating uncertainties coming from physical measurements, when performing mathematical operations involving them. The linear error propagation theory is employed to propagate the errors.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 21
    NFFT

    NFFT

    The official NFFT library repository

    NFFT is a software library, written in C, for computing non-equispaced fast Fourier transforms and related variations.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 22
    ProgressMeter.jl

    ProgressMeter.jl

    Progress meter for long-running computations

    ProgressMeter.jl is a lightweight Julia package that provides customizable progress bars for long-running loops and computations. It allows developers to track the progress of tasks with real-time visual feedback in the terminal, making it easier to monitor performance, debug slow operations, or report computational progress in user-facing applications.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 23
    ReTest.jl

    ReTest.jl

    Testing framework for Julia

    ReTest is a testing framework for Julia allowing defining tests in source files, whose execution is deferred and triggered on demand. This is useful when one likes to have definitions of methods and corresponding tests close to each other. This is also useful for code that is not (yet) organized as a package, and where one doesn't want to maintain a separate set of files for tests. Filtering run testsets with a Regex, which is matched against the descriptions of testsets. This is useful for running only part of the test suite of a package. For example, if you made a change related to addition, and included "addition" in the description of the corresponding testsets, you can easily run only these tests.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 24
    Revise.jl

    Revise.jl

    Automatically update function definitions in a running Julia session

    Revise.jl is a Julia package that automatically updates functions, types, and modules in a running Julia session when their source code changes. It significantly improves the development workflow by removing the need to restart the REPL or re-include files after edits. Revise is ideal for iterative coding, package development, and interactive exploration, enabling a fast and fluid programming experience.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 25
    The Julia Programming Language

    The Julia Programming Language

    High-level, high-performance dynamic language for technical computing

    Julia is a fast, open source high-performance dynamic language for technical computing. It can be used for data visualization and plotting, deep learning, machine learning, scientific computing, parallel computing and so much more. Having a high level syntax, Julia is easy to use for programmers of every level and background. Julia has more than 2,800 community-registered packages including various mathematical libraries, data manipulation tools, and packages for general purpose computing. Libraries from Python, R, C/Fortran, C++, and Java can also be used.
    Downloads: 2 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • 2
  • 3
  • Next
Want the latest updates on software, tech news, and AI?
Get latest updates about software, tech news, and AI from SourceForge directly in your inbox once a month.