Open Source Julia Software Development Software

Julia Software Development Software

View 5678 business solutions

Browse free open source Julia Software Development Software and projects below. Use the toggles on the left to filter open source Julia Software Development Software by OS, license, language, programming language, and project status.

  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • Crowdtesting That Delivers | Testeum Icon
    Crowdtesting That Delivers | Testeum

    Unfixed bugs delaying your launch? Test with real users globally – check it out for free, results in days.

    Testeum connects your software, app, or website to a worldwide network of testers, delivering detailed feedback in under 48 hours. Ensure functionality and refine UX on real devices, all at a fraction of traditional costs. Trusted by startups and enterprises alike, our platform streamlines quality assurance with actionable insights. Click to perfect your product now.
    Click to perfect your product now.
  • 1
    AlphaZero.jl

    AlphaZero.jl

    A generic, simple and fast implementation of Deepmind's AlphaZero

    Beyond its much publicized success in attaining superhuman level at games such as Chess and Go, DeepMind's AlphaZero algorithm illustrates a more general methodology of combining learning and search to explore large combinatorial spaces effectively. We believe that this methodology can have exciting applications in many different research areas. Because AlphaZero is resource-hungry, successful open-source implementations (such as Leela Zero) are written in low-level languages (such as C++) and optimized for highly distributed computing environments. This makes them hardly accessible for students, researchers and hackers. Many simple Python implementations can be found on Github, but none of them is able to beat a reasonable baseline on games such as Othello or Connect Four. As an illustration, the benchmark in the README of the most popular of them only features a random baseline, along with a greedy baseline that does not appear to be significantly stronger.
    Downloads: 27 This Week
    Last Update:
    See Project
  • 2
    The Julia Programming Language

    The Julia Programming Language

    High-level, high-performance dynamic language for technical computing

    Julia is a fast, open source high-performance dynamic language for technical computing. It can be used for data visualization and plotting, deep learning, machine learning, scientific computing, parallel computing and so much more. Having a high level syntax, Julia is easy to use for programmers of every level and background. Julia has more than 2,800 community-registered packages including various mathematical libraries, data manipulation tools, and packages for general purpose computing. Libraries from Python, R, C/Fortran, C++, and Java can also be used.
    Downloads: 12 This Week
    Last Update:
    See Project
  • 3
    Manifolds.jl

    Manifolds.jl

    Manifolds.jl provides a library of manifolds

    Package Manifolds.jl aims to provide both a unified interface to define and use manifolds as well as a library of manifolds to use for your projects. This package is mostly stable, see #438 for planned upcoming changes. The implemented manifolds are accompanied by their mathematical formulae. The manifolds are implemented using the interface for manifolds given in ManifoldsBase.jl. You can use that interface to implement your own software on manifolds, such that all manifolds based on that interface can be used within your code.
    Downloads: 10 This Week
    Last Update:
    See Project
  • 4
    DecisionTree.jl

    DecisionTree.jl

    Julia implementation of Decision Tree (CART) Random Forest algorithm

    Julia implementation of Decision Tree (CART) and Random Forest algorithms.
    Downloads: 9 This Week
    Last Update:
    See Project
  • Build Securely on AWS with Proven Frameworks Icon
    Build Securely on AWS with Proven Frameworks

    Lay a foundation for success with Tested Reference Architectures developed by Fortinet’s experts. Learn more in this white paper.

    Moving to the cloud brings new challenges. How can you manage a larger attack surface while ensuring great network performance? Turn to Fortinet’s Tested Reference Architectures, blueprints for designing and securing cloud environments built by cybersecurity experts. Learn more and explore use cases in this white paper.
    Download Now
  • 5
    SymbolicUtils.jl

    SymbolicUtils.jl

    Symbolic expressions, rewriting and simplification

    SymbolicUtils is a practical symbolic programming utility in Julia. It lets you create, rewrite and simplify symbolic expressions, and generate Julia code from them. SymbolicUtils.jl provides various utilities for symbolic computing. SymbolicUtils.jl is what one would use to build a Computer Algebra System (CAS). If you're looking for a complete CAS, similar to SymPy or Mathematica, see Symbolics.jl. If you want to build a crazy CAS for your weird Octonian algebras, you've come to the right place. Symbols in SymbolicUtils carry type information. Operations on them propagate this information. A rule-based rewriting language can be used to find subexpressions that satisfy arbitrary conditions and apply arbitrary transformations on the matches. The library also contains a set of useful simplification rules for expressions of numeric symbols and numbers. These can be remixed and extended for special purposes.
    Downloads: 9 This Week
    Last Update:
    See Project
  • 6
    MLJBase.jl

    MLJBase.jl

    Core functionality for the MLJ machine learning framework

    Repository for developers that provides core functionality for the MLJ machine learning framework. MLJ is a Julia framework for combining and tuning machine learning models. This repository provides core functionality for MLJ.
    Downloads: 8 This Week
    Last Update:
    See Project
  • 7
    Trixi.jl

    Trixi.jl

    Trixi.jl: Adaptive high-order numerical simulations of hyperbolic PDEs

    Trixi.jl is a numerical simulation framework for hyperbolic conservation laws written in Julia. A key objective for the framework is to be useful to both scientists and students. Therefore, next to having an extensible design with a fast implementation, Trixi.jl is focused on being easy to use for new or inexperienced users, including the installation and postprocessing procedures.
    Downloads: 7 This Week
    Last Update:
    See Project
  • 8
    Documenter.jl

    Documenter.jl

    A documentation generator for Julia

    A documentation generator for Julia. A package for building documentation from docstrings and markdown files.
    Downloads: 6 This Week
    Last Update:
    See Project
  • 9
    FFTW.jl

    FFTW.jl

    Julia bindings to the FFTW library for fast Fourier transforms

    This package provides Julia bindings to the FFTW library for fast Fourier transforms (FFTs), as well as functionality useful for signal processing. These functions were formerly a part of Base Julia. Users with a build of Julia based on Intel's Math Kernel Library (MKL) can use MKL for FFTs by setting a preference in their top-level project by either using the FFTW.set_provider!() method, or by directly setting the preference using Preferences.jl. Note that this choice will be recorded for the current project, and other projects that wish to use MKL for FFTs should also set that same preference. Note further that MKL provides only a subset of the functionality provided by FFTW.
    Downloads: 6 This Week
    Last Update:
    See Project
  • Sales CRM and Pipeline Management Software | Pipedrive Icon
    Sales CRM and Pipeline Management Software | Pipedrive

    The easy and effective CRM for closing deals

    Pipedrive’s simple interface empowers salespeople to streamline workflows and unite sales tasks in one workspace. Unlock instant sales insights with Pipedrive’s visual sales pipeline and fine-tune your strategy with robust reporting features and a personalized AI Sales Assistant.
    Try it for free
  • 10
    GDAL.jl

    GDAL.jl

    Thin Julia wrapper for GDAL - Geospatial Data Abstraction Library

    Julia wrapper for GDAL - Geospatial Data Abstraction Library. This package is a binding to the C API of GDAL/OGR. It provides only a C style usage, where resources must be closed manually, and datasets are pointers. Other packages can build on top of this to provide a more Julian user experience. See for example ArchGDAL.jl. Most users will want to use ArchGDAL.jl instead of using GDAL.jl directly.
    Downloads: 6 This Week
    Last Update:
    See Project
  • 11
    Gen.jl

    Gen.jl

    A general-purpose probabilistic programming system

    An open-source stack for generative modeling and probabilistic inference. Gen’s inference library gives users building blocks for writing efficient probabilistic inference algorithms that are tailored to their models, while automating the tricky math and the low-level implementation details. Gen helps users write hybrid algorithms that combine neural networks, variational inference, sequential Monte Carlo samplers, and Markov chain Monte Carlo. Gen features an easy-to-use modeling language for writing down generative models, inference models, variational families, and proposal distributions using ordinary code. But it also lets users migrate parts of their model or inference algorithm to specialized modeling languages for which it can generate especially fast code. Users can also hand-code parts of their models that demand better performance. Neural network inference is fast, but can be inaccurate on out-of-distribution data, and requires expensive training.
    Downloads: 6 This Week
    Last Update:
    See Project
  • 12
    IntervalArithmetic.jl

    IntervalArithmetic.jl

    Library for validated numerics using interval arithmetic

    IntervalArithmetic.jl is a Julia package for validated numerics in Julia. All calculations are carried out using interval arithmetic where quantities are treated as intervals. The final result is a rigorous enclosure of the true value. We are working towards having the IntervalArithmetic library be conformant with the IEEE 1788-2015 Standard for Interval Arithmetic. To do so, we have incorporated tests from the ITF1788 test suite.
    Downloads: 6 This Week
    Last Update:
    See Project
  • 13
    ProbabilisticCircuits.jl

    ProbabilisticCircuits.jl

    Probabilistic Circuits from the Juice library

    This module provides a Julia implementation of Probabilistic Circuits (PCs), tools to learn structure and parameters of PCs from data, and tools to do tractable exact inference with them. Probabilistic Circuits provides a unifying framework for several family of tractable probabilistic models. PCs are represented as computational graphs that define a joint probability distribution as recursive mixtures (sum units) and factorizations (product units) of simpler distributions (input units). Given certain structural properties, PCs enable different range of tractable exact probabilistic queries such as computing marginals, conditionals, maximum a posteriori (MAP), and more advanced probabilistic queries.
    Downloads: 6 This Week
    Last Update:
    See Project
  • 14
    DynamicalSystems.jl

    DynamicalSystems.jl

    Award winning software library for nonlinear dynamics timeseries

    DynamicalSystems.jl is an award-winning Julia software library for nonlinear dynamics and nonlinear time series analysis. To install DynamicalSystems.jl, run import Pkg; Pkg.add("DynamicalSystems"). To learn how to use it and see its contents visit the documentation, which you can either find online or build locally by running the docs/make.jl file. DynamicalSystems.jl is part of JuliaDynamics, an organization dedicated to creating high-quality scientific software. All implemented algorithms provide a high-level scientific description of their functionality in their documentation string as well as references to scientific papers. The documentation features hundreds of tutorials and examples ranging from introductory to expert usage.
    Downloads: 5 This Week
    Last Update:
    See Project
  • 15
    QuantumOptics.jl

    QuantumOptics.jl

    Library for the numerical simulation of closed as well as open quantum

    QuantumOptics.jl is a numerical framework written in the Julia programming language that makes it easy to simulate various kinds of open quantum systems. It is inspired by the Quantum Optics Toolbox for MATLAB and the Python framework QuTiP. QuantumOptics.jl optimizes processor usage and memory consumption by relying on different ways to store and work with operators. The framework comes with a plethora of pre-defined systems and interactions making it very easy to focus on the physics, not on the numerics. Every function in the framework has been severely tested with all tests and their code coverage presented on the framework's GitHub page.
    Downloads: 5 This Week
    Last Update:
    See Project
  • 16
    Revise.jl

    Revise.jl

    Automatically update function definitions in a running Julia session

    Revise.jl is a Julia package that automatically updates functions, types, and modules in a running Julia session when their source code changes. It significantly improves the development workflow by removing the need to restart the REPL or re-include files after edits. Revise is ideal for iterative coding, package development, and interactive exploration, enabling a fast and fluid programming experience.
    Downloads: 5 This Week
    Last Update:
    See Project
  • 17
    The NLopt module for Julia

    The NLopt module for Julia

    Package to call the NLopt nonlinear-optimization library from Julia

    This module provides a Julia-language interface to the free/open-source NLopt library for nonlinear optimization. NLopt provides a common interface for many different optimization algorithms.
    Downloads: 5 This Week
    Last Update:
    See Project
  • 18
    Augmentor.jl

    Augmentor.jl

    A fast image augmentation library in Julia for machine learning

    A fast library for increasing the number of training images by applying various transformations. Augmentor is a real-time image augmentation library designed to render the process of artificial dataset enlargement more convenient, less error prone, and easier to reproduce. It offers the user the ability to build a stochastic image-processing pipeline (or simply augmentation pipeline) using image operations as building blocks. In other words, an augmentation pipeline is little more but a sequence of operations for which the parameters can (but need not) be random variables, as the following code snippet demonstrates.
    Downloads: 4 This Week
    Last Update:
    See Project
  • 19
    BenchmarkTools.jl

    BenchmarkTools.jl

    A benchmarking framework for the Julia language

    BenchmarkTools makes performance tracking of Julia code easy by supplying a framework for writing and running groups of benchmarks as well as comparing benchmark results. This package is used to write and run the benchmarks found in BaseBenchmarks.jl. The CI infrastructure for automated performance testing of the Julia language is not in this package but can be found in Nanosoldier.jl. Our story begins with two packages, "Benchmarks" and "BenchmarkTrackers". The Benchmarks package implemented an execution strategy for collecting and summarizing individual benchmark results, while BenchmarkTrackers implemented a framework for organizing, running, and determining regressions of groups of benchmarks. Under the hood, BenchmarkTrackers relied on Benchmarks for actual benchmark execution.
    Downloads: 4 This Week
    Last Update:
    See Project
  • 20
    Catlab.jl

    Catlab.jl

    A framework for applied category theory in the Julia language

    Catlab.jl is a framework for applied and computational category theory, written in the Julia language. Catlab provides a programming library and interactive interface for applications of category theory to scientific and engineering fields. It emphasizes monoidal categories due to their wide applicability but can support any categorical structure that is formalizable as a generalized algebraic theory. First and foremost, Catlab provides data structures, algorithms, and serialization for applied category theory. Macros offer a convenient syntax for specifying categorical doctrines and type-safe symbolic manipulation systems. Wiring diagrams (aka string diagrams) are supported through specialized data structures and can be serialized to and from GraphML (an XML-based format) and JSON.
    Downloads: 4 This Week
    Last Update:
    See Project
  • 21
    Images.jl

    Images.jl

    An image library for Julia

    JuliaImages (source code) hosts the major Julia packages for image processing. Julia is well-suited to image processing because it is a modern and elegant high-level language that is a pleasure to use, while also allowing you to write "inner loops" that compile to efficient machine code (i.e., it is as fast as C). Julia supports multithreading and, through add-on packages, GPU processing. JuliaImages is a collection of packages specifically focused on image processing. It is not yet as complete as some toolkits for other programming languages, but it has many useful algorithms. It is focused on clean architecture and is designed to unify "machine vision" and "biomedical 3d image processing" communities.
    Downloads: 4 This Week
    Last Update:
    See Project
  • 22
    MLJ

    MLJ

    A Julia machine learning framework

    MLJ (Machine Learning in Julia) is a toolbox written in Julia providing a common interface and meta-algorithms for selecting, tuning, evaluating, composing and comparing about 200 machine learning models written in Julia and other languages. The functionality of MLJ is distributed over several repositories illustrated in the dependency chart below. These repositories live at the JuliaAI umbrella organization.
    Downloads: 4 This Week
    Last Update:
    See Project
  • 23
    Metatheory.jl

    Metatheory.jl

    General purpose algebraic metaprogramming

    Metatheory.jl is a general purpose term rewriting, metaprogramming and algebraic computation library for the Julia programming language, designed to take advantage of the powerful reflection capabilities to bridge the gap between symbolic mathematics, abstract interpretation, equational reasoning, optimization, composable compiler transforms, and advanced homoiconic pattern matching features. The core features of Metatheory.jl are a powerful rewrite rule definition language, a vast library of functional combinators for classical term rewriting and an e-graph rewriting, a fresh approach to term rewriting achieved through an equality saturation algorithm. Metatheory.jl can manipulate any kind of Julia symbolic expression type, as long as it satisfies the TermInterface.jl.
    Downloads: 4 This Week
    Last Update:
    See Project
  • 24
    ModelingToolkit.jl

    ModelingToolkit.jl

    Modeling framework for automatically parallelized scientific ML

    ModelingToolkit.jl is a modeling language for high-performance symbolic-numeric computation in scientific computing and scientific machine learning. It then mixes ideas from symbolic computational algebra systems with causal and acausal equation-based modeling frameworks to give an extendable and parallel modeling system. It allows for users to give a high-level description of a model for symbolic preprocessing to analyze and enhance the model. Automatic symbolic transformations, such as index reduction of differential-algebraic equations, make it possible to solve equations that are impossible to solve with a purely numeric-based technique. ModelingToolkit.jl is a symbolic-numeric modeling package. Thus it combines some of the features from symbolic computing packages like SymPy or Mathematica with the ideas of equation-based modeling systems like the causal Simulink and the acausal Modelica.
    Downloads: 4 This Week
    Last Update:
    See Project
  • 25
    QML

    QML

    Build Qt6 QML interfaces for Julia programs

    This package provides an interface to Qt6 QML (and to Qt5 for older versions). It uses the CxxWrap package to expose C++ classes. Current functionality allows interaction between QML and Julia using Observables, JuliaItemModels and function calling. There is also a generic Julia display, as well as specialized integration for image drawing, GR plots and Makie.
    Downloads: 4 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • 2
  • 3
  • Next
Want the latest updates on software, tech news, and AI?
Get latest updates about software, tech news, and AI from SourceForge directly in your inbox once a month.