CrypTen
A framework for Privacy Preserving Machine Learning
... and neural network operations. Its design mirrors PyTorch’s modular and library-based structure, enabling flexible experimentation, debugging, and model development. The framework supports both encryption and decryption of tensors and operations such as addition and multiplication over encrypted values. Although not yet production-ready, CrypTen focuses on advancing real-world secure ML applications, such as training and inference over private datasets, without exposing sensitive data.