Showing 6 open source projects for "learning vector quantization"

View related business solutions
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • Desktop and Mobile Device Management Software Icon
    Desktop and Mobile Device Management Software

    It's a modern take on desktop management that can be scaled as per organizational needs.

    Desktop Central is a unified endpoint management (UEM) solution that helps in managing servers, laptops, desktops, smartphones, and tablets from a central location.
    Learn More
  • 1
    TensorRT

    TensorRT

    C++ library for high performance inference on NVIDIA GPUs

    NVIDIA® TensorRT™ is an SDK for high-performance deep learning inference. It includes a deep learning inference optimizer and runtime that delivers low latency and high throughput for deep learning inference applications. TensorRT-based applications perform up to 40X faster than CPU-only platforms during inference. With TensorRT, you can optimize neural network models trained in all major frameworks, calibrate for lower precision with high accuracy, and deploy to hyperscale data centers,...
    Downloads: 19 This Week
    Last Update:
    See Project
  • 2
    dlib

    dlib

    Toolkit for making machine learning and data analysis applications

    Dlib is a modern C++ toolkit containing machine learning algorithms and tools for creating complex software in C++ to solve real world problems. It is used in both industry and academia in a wide range of domains including robotics, embedded devices, mobile phones, and large high performance computing environments. Dlib's open source licensing allows you to use it in any application, free of charge. Good unit test coverage, the ratio of unit test lines of code to library lines of code is...
    Downloads: 10 This Week
    Last Update:
    See Project
  • 3
    MegEngine

    MegEngine

    Easy-to-use deep learning framework with 3 key features

    MegEngine is a fast, scalable and easy-to-use deep learning framework with 3 key features. You can represent quantization/dynamic shape/image pre-processing and even derivation in one model. After training, just put everything into your model and inference it on any platform at ease. Speed and precision problems won't bother you anymore due to the same core inside. In training, GPU memory usage could go down to one-third at the cost of only one additional line, which enables the DTR algorithm. ...
    Downloads: 4 This Week
    Last Update:
    See Project
  • 4
    XNNPACK

    XNNPACK

    High-efficiency floating-point neural network inference operators

    XNNPACK is a highly optimized, low-level neural network inference library developed by Google for accelerating deep learning workloads across a variety of hardware architectures, including ARM, x86, WebAssembly, and RISC-V. Rather than serving as a standalone ML framework, XNNPACK provides high-performance computational primitives—such as convolutions, pooling, activation functions, and arithmetic operations—that are integrated into higher-level frameworks like TensorFlow Lite, PyTorch...
    Downloads: 3 This Week
    Last Update:
    See Project
  • Digital business card + lead capture + contact enrichment Icon
    Digital business card + lead capture + contact enrichment

    Your complete in-person marketing platform

    Share digital business cards, capture leads, and enrich validated contact info - at events, in the field, and beyond. Powered by AI and our proprietary data engine, Popl drives growth for companies around the world, turning every handshake into an opportunity.
    Learn More
  • 5
    BudgetedSVM

    BudgetedSVM

    BudgetedSVM: A C++ Toolbox for Large-scale, Non-linear Classification

    We present BudgetedSVM, a C++ toolbox containing highly optimized implementations of three recently proposed algorithms for scalable training of Support Vector Machine (SVM) approximators: Adaptive Multi-hyperplane Machines (AMM), Budgeted Stochastic Gradient Descent (BSGD), and Low-rank Linearization SVM (LLSVM). BudgetedSVM trains models with accuracy comparable to LibSVM in time comparable to LibLinear, as it allows solving highly non-linear classi fication problems with millions of...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 6

    drvq

    dimensionality-recursive vector quantization

    drvq is a C++ library implementation of dimensionality-recursive vector quantization, a fast vector quantization method in high-dimensional Euclidean spaces under arbitrary data distributions. It is an approximation of k-means that is practically constant in data size and applies to arbitrarily high dimensions but can only scale to a few thousands of centroids. As a by-product of training, a tree structure performs either exact or approximate quantization on trained centroids, the latter being not very precise but extremely fast. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • Next