29 projects for "python neural" with 2 filters applied:

  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • Gen AI apps are built with MongoDB Atlas Icon
    Gen AI apps are built with MongoDB Atlas

    The database for AI-powered applications.

    MongoDB Atlas is the developer-friendly database used to build, scale, and run gen AI and LLM-powered apps—without needing a separate vector database. Atlas offers built-in vector search, global availability across 115+ regions, and flexible document modeling. Start building AI apps faster, all in one place.
    Start Free
  • 1
    Neural Tangents

    Neural Tangents

    Fast and Easy Infinite Neural Networks in Python

    Neural Tangents is a high-level neural network API for specifying complex, hierarchical models at both finite and infinite width, built in Python on top of JAX and XLA. It lets researchers define architectures from familiar building blocks—convolutions, pooling, residual connections, and nonlinearities—and obtain not only the finite network but also the corresponding Gaussian Process (GP) kernel of its infinite-width limit.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 2
    CoreNet

    CoreNet

    CoreNet: A library for training deep neural networks

    CoreNet is Apple’s internal deep learning framework for distributed neural network training, designed for high scalability, low-latency communication, and strong hardware efficiency. It focuses on enabling large-scale model training across clusters of GPUs and accelerators by optimizing data flow and parallelism strategies. CoreNet provides abstractions for data, tensor, and pipeline parallelism, allowing models to scale without code duplication or heavy manual configuration. Its distributed...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 3
    TorchQuantum

    TorchQuantum

    A PyTorch-based framework for Quantum Classical Simulation

    A PyTorch-based framework for Quantum Classical Simulation, Quantum Machine Learning, Quantum Neural Networks, Parameterized Quantum Circuits with support for easy deployments on real quantum computers. Researchers on quantum algorithm design, parameterized quantum circuit training, quantum optimal control, quantum machine learning, and quantum neural networks. Dynamic computation graph, automatic gradient computation, fast GPU support, batch model terrorized processing.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 4
    AudioCraft

    AudioCraft

    Audiocraft is a library for audio processing and generation

    ...It includes MusicGen for music generation conditioned on text (and optionally melody) and AudioGen for text-conditioned sound effects and environmental audio. Both models operate over discrete audio tokens produced by a neural codec (EnCodec), which acts like a tokenizer for waveforms and enables efficient sequence modeling. The repo provides inference scripts, checkpoints, and simple Python APIs so you can generate clips from prompts or incorporate the models into applications. It also contains training code and recipes, so researchers can fine-tune on custom data or explore new objectives without building infrastructure from scratch. ...
    Downloads: 1 This Week
    Last Update:
    See Project
  • Build Securely on Azure with Proven Frameworks Icon
    Build Securely on Azure with Proven Frameworks

    Lay a foundation for success with Tested Reference Architectures developed by Fortinet’s experts. Learn more in this white paper.

    Moving to the cloud brings new challenges. How can you manage a larger attack surface while ensuring great network performance? Turn to Fortinet’s Tested Reference Architectures, blueprints for designing and securing cloud environments built by cybersecurity experts. Learn more and explore use cases in this white paper.
    Download Now
  • 5
    tinygrad

    tinygrad

    Deep learning framework

    This may not be the best deep learning framework, but it is a deep learning framework. Due to its extreme simplicity, it aims to be the easiest framework to add new accelerators to, with support for both inference and training. If XLA is CISC, tinygrad is RISC.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 6
    FairChem

    FairChem

    FAIR Chemistry's library of machine learning methods for chemistry

    FAIRChem is a unified library for machine learning in chemistry and materials, consolidating data, pretrained models, demos, and application code into a single, versioned toolkit. Version 2 modernizes the stack with a cleaner core package and breaking changes relative to V1, focusing on simpler installs and a stable API surface for production and research. The centerpiece models (e.g., UMA variants) plug directly into the ASE ecosystem via a FAIRChem calculator, so users can run relaxations,...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 7
    towhee

    towhee

    Framework that is dedicated to making neural data processing

    Towhee is an open-source machine-learning pipeline that helps you encode your unstructured data into embeddings. You can use our Python API to build a prototype of your pipeline and use Towhee to automatically optimize it for production-ready environments. From images to text to 3D molecular structures, Towhee supports data transformation for nearly 20 different unstructured data modalities. We provide end-to-end pipeline optimizations, covering everything from data decoding/encoding, to...
    Downloads: 5 This Week
    Last Update:
    See Project
  • 8
    Alpa

    Alpa

    Training and serving large-scale neural networks

    Alpa is a system for training and serving large-scale neural networks. Scaling neural networks to hundreds of billions of parameters has enabled dramatic breakthroughs such as GPT-3, but training and serving these large-scale neural networks require complicated distributed system techniques. Alpa aims to automate large-scale distributed training and serving with just a few lines of code.
    Downloads: 16 This Week
    Last Update:
    See Project
  • 9
    Neural Network Visualization

    Neural Network Visualization

    Project for processing neural networks and rendering to gain insights

    nn_vis is a minimalist visualization tool for neural networks written in Python using OpenGL and Pygame. It provides an interactive, graphical representation of how data flows through neural network layers, offering a unique educational experience for those new to deep learning or looking to explain it visually. By animating input, weights, activations, and outputs, the tool demystifies neural network operations and helps users intuitively grasp complex concepts. ...
    Downloads: 1 This Week
    Last Update:
    See Project
  • Build Securely on AWS with Proven Frameworks Icon
    Build Securely on AWS with Proven Frameworks

    Lay a foundation for success with Tested Reference Architectures developed by Fortinet’s experts. Learn more in this white paper.

    Moving to the cloud brings new challenges. How can you manage a larger attack surface while ensuring great network performance? Turn to Fortinet’s Tested Reference Architectures, blueprints for designing and securing cloud environments built by cybersecurity experts. Learn more and explore use cases in this white paper.
    Download Now
  • 10
    MLPACK is a C++ machine learning library with emphasis on scalability, speed, and ease-of-use. Its aim is to make machine learning possible for novice users by means of a simple, consistent API, while simultaneously exploiting C++ language features to provide maximum performance and flexibility for expert users. * More info + downloads: https://mlpack.org * Git repo: https://github.com/mlpack/mlpack
    Downloads: 0 This Week
    Last Update:
    See Project
  • 11
    NeuMan

    NeuMan

    Neural Human Radiance Field from a Single Video (ECCV 2022)

    NeuMan is a reference implementation that reconstructs both an animatable human and its background scene from a single monocular video using neural radiance fields. It supports novel view and novel pose synthesis, enabling compositional results like transferring reconstructed humans into new scenes. The pipeline separates human/body and environment, learning consistent geometry and appearance to support animation. Demos showcase sequences such as dance and handshake, and the code provides...
    Downloads: 5 This Week
    Last Update:
    See Project
  • 12
    Model Search

    Model Search

    Framework that implements AutoML algorithms

    Model Search is an AutoML research system for discovering neural network architectures with minimal human intervention. Instead of hand-crafting models, you define a search space and objectives, then the system explores candidate architectures using controllers and population-based strategies. It supports multiple tasks (such as vision or text) by letting you express reusable building blocks—layers, cells, and topologies—that the search can recombine. Training, evaluation, and promotion of...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 13
    SVoice (Speech Voice Separation)

    SVoice (Speech Voice Separation)

    We provide a PyTorch implementation of the paper Voice Separation

    SVoice is a PyTorch-based implementation of Facebook Research’s study on speaker voice separation as described in the paper “Voice Separation with an Unknown Number of Multiple Speakers.” This project presents a deep learning framework capable of separating mixed audio sequences where several people speak simultaneously, without prior knowledge of how many speakers are present. The model employs gated neural networks with recurrent processing blocks that disentangle voices over multiple...
    Downloads: 3 This Week
    Last Update:
    See Project
  • 14
    TensorNetwork

    TensorNetwork

    A library for easy and efficient manipulation of tensor networks

    TensorNetwork is a high-level library for building and contracting tensor networks—graphical factorizations of large tensors that underpin many algorithms in physics and machine learning. It abstracts networks as nodes and edges, then compiles efficient contraction orders across multiple numeric backends so users can focus on model structure rather than index bookkeeping. Common network families (MPS/TT, PEPS, MERA, tree networks) are expressed with concise APIs that encourage...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 15
    Arraymancer

    Arraymancer

    A fast, ergonomic and portable tensor library in Nim

    Arraymancer is a tensor and deep learning library for the Nim programming language, designed for high-performance numerical computations and machine learning applications.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 16
    Nerfies

    Nerfies

    This is the code for Deformable Neural Radiance Fields

    Nerfies demonstrates deformation-aware neural radiance fields that reconstruct and render dynamic, real-world scenes from casual video. Instead of assuming a static world, the method learns a canonical space plus a deformation field that maps changing poses or expressions back to that space during training. This lets the system generate photorealistic novel views of nonrigid subjects—faces, bodies, cloth—while preserving fine detail and consistent lighting. The training pipeline handles...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 17
    data-science-ipython-notebooks

    data-science-ipython-notebooks

    Data science Python notebooks: Deep learning

    ...Advanced sections touch on neural networks and distributed computing topics, helping you bridge from basics to production-adjacent workflows. The collection is suitable for self-paced study, quick reference, or as teaching materials in workshops. By combining narrative explanations with executable code, it shortens the path from theory to working prototypes.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 18
    Video Nonlocal Net

    Video Nonlocal Net

    Non-local Neural Networks for Video Classification

    video-nonlocal-net implements Non-local Neural Networks for video understanding, adding long-range dependency modeling to 2D/3D ConvNet backbones. Non-local blocks compute attention-like responses across all positions in space-time, allowing a feature at one frame and location to aggregate information from distant frames and regions. This formulation improves action recognition and spatiotemporal reasoning, especially for classes requiring context beyond short temporal windows. The repo...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 19
    Compare GAN

    Compare GAN

    Compare GAN code

    compare_gan is a research codebase that standardizes how Generative Adversarial Networks are trained and evaluated so results are comparable across papers and datasets. It offers reference implementations for popular GAN architectures and losses, plus a consistent training harness to remove confounding differences in optimization or preprocessing. The library’s evaluation suite includes widely used metrics and diagnostics that quantify sample quality, diversity, and mode coverage. With...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 20
    seq2seq

    seq2seq

    A general-purpose encoder-decoder framework for Tensorflow

    seq2seq is an early, influential TensorFlow reference implementation for sequence-to-sequence learning with attention, covering tasks like neural machine translation, summarization, and dialogue. It packaged encoders, decoders, attention mechanisms, and beam search into a modular training and inference framework. The codebase showcased best practices for batching, bucketing by sequence length, and handling variable-length sequences efficiently on GPUs. Researchers used it as a baseline to...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 21
    PyCNN

    PyCNN

    Image Processing with Cellular Neural Networks in Python

    Image Processing with Cellular Neural Networks in Python. Cellular Neural Networks (CNN) are a parallel computing paradigm that was first proposed in 1988. Cellular neural networks are similar to neural networks, with the difference that communication is allowed only between neighboring units. Image Processing is one of its applications. CNN processors were designed to perform image processing; specifically, the original application of CNN processors was to perform real-time ultra-high frame-rate (>10,000 frame/s) processing unachievable by digital processors.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 22
    Feed-forward neural network for python
    ffnet is a fast and easy-to-use feed-forward neural network training solution for python. Many nice features are implemented: arbitrary network connectivity, automatic data normalization, very efficient training tools, network export to fortran code. Now ffnet has also a GUI called ffnetui.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 23
    Fast Artificial Neural Network Library is a free open source neural network library, which implements multilayer artificial neural networks in C with support for both fully connected and sparsely connected networks. Cross-platform execution in both fixed and floating point are supported. It includes a framework for easy handling of training data sets. It is easy to use, versatile, well documented, and fast. Bindings to more than 15 programming languages are available. An easy to read...
    Downloads: 34 This Week
    Last Update:
    See Project
  • 24
    This project provides a set of Python tools for creating various kinds of neural networks, which can also be powered by genetic algorithms using grammatical evolution. MLP, backpropagation, recurrent, sparse, and skip-layer networks are supported.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 25
    NeMo is a high-performance spiking neural network simulator which simulates networks of Izhikevich neurons on CUDA-enabled GPUs. NeMo is a C++ class library, with additional interfaces for pure C, Python, and Matlab.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • 2
  • Next