10 projects for "neural algorithm" with 2 filters applied:

  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • MongoDB Atlas runs apps anywhere Icon
    MongoDB Atlas runs apps anywhere

    Deploy in 115+ regions with the modern database for every enterprise.

    MongoDB Atlas gives you the freedom to build and run modern applications anywhere—across AWS, Azure, and Google Cloud. With global availability in over 115 regions, Atlas lets you deploy close to your users, meet compliance needs, and scale with confidence across any geography.
    Start Free
  • 1
    TorchQuantum

    TorchQuantum

    A PyTorch-based framework for Quantum Classical Simulation

    A PyTorch-based framework for Quantum Classical Simulation, Quantum Machine Learning, Quantum Neural Networks, Parameterized Quantum Circuits with support for easy deployments on real quantum computers. Researchers on quantum algorithm design, parameterized quantum circuit training, quantum optimal control, quantum machine learning, and quantum neural networks. Dynamic computation graph, automatic gradient computation, fast GPU support, batch model terrorized processing.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 2
    SwiftOCR

    SwiftOCR

    Fast and simple OCR library written in Swift

    SwiftOCR is a fast and simple OCR library written in Swift. It uses a neural network for image recognition. As of now, SwiftOCR is optimized for recognizing short, one-line long alphanumeric codes (e.g. DI4C9CM). We currently support iOS and OS X. If you want to recognize normal text like a poem or a news article, go with Tesseract, but if you want to recognize short, alphanumeric codes (e.g. gift cards), I would advise you to choose SwiftOCR because that's where it exceeds. Tesseract...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 3
    benchm-ml

    benchm-ml

    A minimal benchmark for scalability, speed and accuracy of commonly us

    ... implementations. The benchmarks cover algorithms like logistic regression, random forest, gradient boosting, and deep neural networks, and they compare across toolkits such as scikit-learn, R packages, xgboost, H2O, Spark MLlib, etc. The repository is structured in logical folders (e.g. “1-linear”, “2-rf”, “3-boosting”, “4-DL”) each corresponding to algorithm categories.
    Downloads: 7 This Week
    Last Update:
    See Project
  • 4

    OpenDino

    Open Source Java platform for Optimization, DoE, and Learning.

    OpenDino is an open source Java platform for optimization, design of experiment and learning. It provides a graphical user interface (GUI) and a platform which simplifies integration of new algorithms as "Modules". Implemented Modules Evolutionary Algorithms: - CMA-ES - (1+1)-ES - Differential Evolution Deterministic optimization algorithm: - SIMPLEX Learning: - a simple Artificial Neural Net Optimization problems: - test functions - interface for executing...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Deliver secure remote access with OpenVPN. Icon
    Deliver secure remote access with OpenVPN.

    Trusted by nearly 20,000 customers worldwide, and all major cloud providers.

    OpenVPN's products provide scalable, secure remote access — giving complete freedom to your employees to work outside the office while securely accessing SaaS, the internet, and company resources.
    Get started — no credit card required.
  • 5
    cCNN

    cCNN

    A fast implementation of LeCun's convolutional neural network

    Code of this library is partialy based on myCNN MATLAB class written by Nikolay Chemurin.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 6
    This project provides a set of Python tools for creating various kinds of neural networks, which can also be powered by genetic algorithms using grammatical evolution. MLP, backpropagation, recurrent, sparse, and skip-layer networks are supported.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 7
    Foad (EKG Processing)
    Foad is an open source software which receive an EKG Signal from scanner, WFDB database or heart sensors. Finding patient disease started by taking Fourier transform (FFT) from input signal and extract a single cycle. Based on some heuristic algorithm the most important feature like P , Q , R , S , T captured and feed to trained neural network. and so the final decision made by CNN library. As mentioned before this software also capable do some image processing on scanned paper to lower...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 8
    ANT is a lightweight implementation in C of a kind of artificial neural net called Multilayer Perceptron, which uses the backpropagation algorithm as learning method. The package includes an introductory example to start using artificial neural nets.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 9
    Genetic Algorithm implementation.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Build Securely on Azure with Proven Frameworks Icon
    Build Securely on Azure with Proven Frameworks

    Lay a foundation for success with Tested Reference Architectures developed by Fortinet’s experts. Learn more in this white paper.

    Moving to the cloud brings new challenges. How can you manage a larger attack surface while ensuring great network performance? Turn to Fortinet’s Tested Reference Architectures, blueprints for designing and securing cloud environments built by cybersecurity experts. Learn more and explore use cases in this white paper.
    Download Now
  • 10
    CRFasRNN

    CRFasRNN

    Semantic image segmentation method described in the ICCV 2015 paper

    CRF-RNN is a deep neural architecture that integrates fully connected Conditional Random Fields (CRFs) with Convolutional Neural Networks (CNNs) by reformulating mean-field CRF inference as a Recurrent Neural Network. This fusion enables end-to-end training via backpropagation for semantic image segmentation tasks, eliminating the need for separate, offline post-processing steps. Our work allows computers to recognize objects in images, what is distinctive about our work is that we also recover...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • Next
Want the latest updates on software, tech news, and AI?
Get latest updates about software, tech news, and AI from SourceForge directly in your inbox once a month.