Showing 7 open source projects for "bayesian python"

View related business solutions
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • No-Nonsense Code-to-Cloud Security for Devs | Aikido Icon
    No-Nonsense Code-to-Cloud Security for Devs | Aikido

    Connect your GitHub, GitLab, Bitbucket, or Azure DevOps account to start scanning your repos for free.

    Aikido provides a unified security platform for developers, combining 12 powerful scans like SAST, DAST, and CSPM. AI-driven AutoFix and AutoTriage streamline vulnerability management, while runtime protection blocks attacks.
    Start for Free
  • 1
    BayesianOptimization

    BayesianOptimization

    A Python implementation of global optimization with gaussian processes

    BayesianOptimization is a Python library that helps find the maximum (or minimum) of expensive or unknown objective functions using Bayesian optimization. This technique is especially useful for hyperparameter tuning in machine learning, where evaluating the objective function is costly. The library provides an easy-to-use API for defining bounds and optimizing over parameter spaces using probabilistic models like Gaussian Processes.
    Downloads: 5 This Week
    Last Update:
    See Project
  • 2
    Pyro

    Pyro

    Deep universal probabilistic programming with Python and PyTorch

    Pyro is a flexible, universal probabilistic programming language (PPL) built on PyTorch. It allows for expressive deep probabilistic modeling, combining the best of modern deep learning and Bayesian modeling. Pyro is centered on four main principles: Universal, Scalable, Minimal and Flexible. Pyro is universal in that it can represent any computable probability distribution. It scales easily to large datasets with minimal overhead, and has a small yet powerful core of composable abstractions...
    Downloads: 5 This Week
    Last Update:
    See Project
  • 3
    PyMC3

    PyMC3

    Probabilistic programming in Python

    PyMC3 allows you to write down models using an intuitive syntax to describe a data generating process. Fit your model using gradient-based MCMC algorithms like NUTS, using ADVI for fast approximate inference — including minibatch-ADVI for scaling to large datasets, or using Gaussian processes to build Bayesian nonparametric models. PyMC3 includes a comprehensive set of pre-defined statistical distributions that can be used as model building blocks. Sometimes an unknown parameter or variable...
    Downloads: 6 This Week
    Last Update:
    See Project
  • 4
    Kalman and Bayesian Filters in Python

    Kalman and Bayesian Filters in Python

    Kalman Filter book using Jupyter Notebook

    Kalman Filter book using Jupyter Notebook. Focuses on building intuition and experience, not formal proofs. Includes Kalman filters,extended Kalman filters, unscented Kalman filters, particle filters, and more. All exercises include solutions. Introductory text for Kalman and Bayesian filters. All code is written in Python, and the book itself is written using Juptyer Notebook so that you can run and modify the code in your browser. What better way to learn? This book teaches you how to solve...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Build Securely on AWS with Proven Frameworks Icon
    Build Securely on AWS with Proven Frameworks

    Lay a foundation for success with Tested Reference Architectures developed by Fortinet’s experts. Learn more in this white paper.

    Moving to the cloud brings new challenges. How can you manage a larger attack surface while ensuring great network performance? Turn to Fortinet’s Tested Reference Architectures, blueprints for designing and securing cloud environments built by cybersecurity experts. Learn more and explore use cases in this white paper.
    Download Now
  • 5
    DEBay

    DEBay

    Deconvolutes qPCR data to estimate cell-type-specific gene expression

    DEBay: Deconvolution of Ensemble through Bayes-approach DEBay estimates cell type-specific gene expression by deconvolution of quantitative PCR data of a mixed population. It will be useful in experiments where the segregation of different cell types in a sample is arduous, but the proportion of different cell types in the sample can be measured. DEBay uses the population distribution data and the qPCR data to calculate the relative expression of the target gene in different cell types in...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 6
    Edward

    Edward

    A probabilistic programming language in TensorFlow

    A library for probabilistic modeling, inference, and criticism. Edward is a Python library for probabilistic modeling, inference, and criticism. It is a testbed for fast experimentation and research with probabilistic models, ranging from classical hierarchical models on small data sets to complex deep probabilistic models on large data sets. Edward fuses three fields, Bayesian statistics and machine learning, deep learning, and probabilistic programming. Edward is built on TensorFlow...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 7
    BATS

    BATS

    Bayesian Adaptive Trial Simulator

    A user-friendly, quick simulator for Bayesian Multi-Arm Multi-Stage Trials
    Downloads: 1 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • Next
Want the latest updates on software, tech news, and AI?
Get latest updates about software, tech news, and AI from SourceForge directly in your inbox once a month.