Showing 2 open source projects for "linux applications"

View related business solutions
  • $300 in Free Credit for Your Google Cloud Projects Icon
    $300 in Free Credit for Your Google Cloud Projects

    Build, test, and explore on Google Cloud with $300 in free credit. No hidden charges. No surprise bills.

    Launch your next project with $300 in free Google Cloud credit—no hidden charges. Test, build, and deploy without risk. Use your credit across the Google Cloud platform to find what works best for your needs. After your credits are used, continue building with free monthly usage products. Only pay when you're ready to scale. Sign up in minutes and start exploring.
    Start Free Trial
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • 1
    Smile

    Smile

    Statistical machine intelligence and learning engine

    Smile is a fast and comprehensive machine learning engine. With advanced data structures and algorithms, Smile delivers the state-of-art performance. Compared to this third-party benchmark, Smile outperforms R, Python, Spark, H2O, xgboost significantly. Smile is a couple of times faster than the closest competitor. The memory usage is also very efficient. If we can train advanced machine learning models on a PC, why buy a cluster? Write applications quickly in Java, Scala, or any JVM...
    Downloads: 3 This Week
    Last Update:
    See Project
  • 2
    Phrasal

    Phrasal

    Statistical phrase-based machine translation system

    Stanford Phrasal is a state-of-the-art statistical phrase-based machine translation system, written in Java. At its core, it provides much the same functionality as the core of Moses. Distinctive features include: providing an easy to use API for implementing new decoding model features, the ability to translating using phrases that include gaps (Galley et al. 2010), and conditional extraction of phrase-tables and lexical reordering models. Developed by The Natural Language Processing Group...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • Next
MongoDB Logo MongoDB