Showing 5 open source projects for "python q learning"

View related business solutions
  • Get the most trusted enterprise browser Icon
    Get the most trusted enterprise browser

    Advanced built-in security helps IT prevent breaches before they happen

    Defend against security incidents with Chrome Enterprise. Create customizable controls, manage extensions and set proactive alerts to keep your data and employees protected without slowing down productivity.
    Download Chrome
  • Gen AI apps are built with MongoDB Atlas Icon
    Gen AI apps are built with MongoDB Atlas

    The database for AI-powered applications.

    MongoDB Atlas is the developer-friendly database used to build, scale, and run gen AI and LLM-powered apps—without needing a separate vector database. Atlas offers built-in vector search, global availability across 115+ regions, and flexible document modeling. Start building AI apps faster, all in one place.
    Start Free
  • 1
    Synapse Machine Learning

    Synapse Machine Learning

    Simple and distributed Machine Learning

    SynapseML (previously MMLSpark) is an open source library to simplify the creation of scalable machine learning pipelines. SynapseML builds on Apache Spark and SparkML to enable new kinds of machine learning, analytics, and model deployment workflows. SynapseML adds many deep learning and data science tools to the Spark ecosystem, including seamless integration of Spark Machine Learning pipelines with the Open Neural Network Exchange (ONNX), LightGBM, The Cognitive Services, Vowpal Wabbit...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 2
    Apache Spark

    Apache Spark

    A unified analytics engine for large-scale data processing

    ... (microbatches) and Structured Streaming, it delivers low-latency event processing suitable for real-time analytics. The built-in MLlib library provides scalable machine learning algorithms, while GraphX enables graph computations integrated with data pipelines. Spark supports multiple languages—Scala, Java, Python, R—and connects with many storage systems like HDFS, S3, Cassandra, and streaming platforms like Kafka, making it a versatile choice for big data workloads in analytics, ETL, and data science.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 3
    X's Recommendation Algorithm

    X's Recommendation Algorithm

    Source code for the X Recommendation Algorithm

    ..., it shows the architecture of large-scale recommendation systems, including candidate sourcing, ranking, and heuristics. While certain components (such as safety layers, spam detection, or private data) are excluded, the release provides valuable insights into the design of real-world machine learning–driven ranking systems. The project is intended as a reference for researchers, developers, and the public to study, experiment with, and better understand the mechanisms behind social media content.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 4
    TextTeaser

    TextTeaser

    TextTeaser is an automatic summarization algorithm

    textteaser is an automatic text summarization algorithm implemented in Python. It extracts the most important sentences from an article to generate concise summaries that retain the core meaning of the original text. The algorithm uses features such as sentence length, keyword frequency, and position within the document to determine which sentences are most relevant. By combining these features with a simple scoring mechanism, it produces summaries that are both readable and informative...
    Downloads: 2 This Week
    Last Update:
    See Project
  • Level Up Your Cyber Defense with External Threat Management Icon
    Level Up Your Cyber Defense with External Threat Management

    See every risk before it hits. From exposed data to dark web chatter. All in one unified view.

    Move beyond alerts. Gain full visibility, context, and control over your external attack surface to stay ahead of every threat.
    Try for Free
  • 5
    node2vec

    node2vec

    Learn continuous vector embeddings for nodes in a graph using biased R

    The node2vec project provides an implementation of the node2vec algorithm, a scalable feature learning method for networks. The algorithm is designed to learn continuous vector representations of nodes in a graph by simulating biased random walks and applying skip-gram models from natural language processing. These embeddings capture community structure as well as structural equivalence, enabling machine learning on graphs for tasks such as classification, clustering, and link prediction...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • Next
Want the latest updates on software, tech news, and AI?
Get latest updates about software, tech news, and AI from SourceForge directly in your inbox once a month.