Search Results for "data leakage detection python"

Showing 2 open source projects for "data leakage detection python"

View related business solutions
  • Run Any Workload on Compute Engine VMs Icon
    Run Any Workload on Compute Engine VMs

    From dev environments to AI training, choose preset or custom VMs with 1–96 vCPUs and industry-leading 99.95% uptime SLA.

    Compute Engine delivers high-performance virtual machines for web apps, databases, containers, and AI workloads. Choose from general-purpose, compute-optimized, or GPU/TPU-accelerated machine types—or build custom VMs to match your exact specs. With live migration and automatic failover, your workloads stay online. New customers get $300 in free credits.
    Try Compute Engine
  • Deploy Apps in Seconds with Cloud Run Icon
    Deploy Apps in Seconds with Cloud Run

    Host and run your applications without the need to manage infrastructure. Scales up from and down to zero automatically.

    Cloud Run is the fastest way to deploy containerized apps. Push your code in Go, Python, Node.js, Java, or any language and Cloud Run builds and deploys it automatically. Get fast autoscaling, pay only when your code runs, and skip the infrastructure headaches. Two million requests free per month. And new customers get $300 in free credit.
    Try Cloud Run Free
  • 1
    Deequ

    Deequ

    Deequ is a library built on top of Apache Spark

    ...It also includes a little domain-specific language called DQDL (Data Quality Definition Language) which allows declarative specification of quality rules. Users typically run Deequ before feeding data downstream (to ML pipelines, analytics, or production systems), enabling early detection and isolation of data errors. There is also a Python wrapper, PyDeequ, for users who prefer working from Python environments.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 2
    X's Recommendation Algorithm

    X's Recommendation Algorithm

    Source code for the X Recommendation Algorithm

    The Algorithm is Twitter’s open source release of the core ranking system that powers the platform’s home timeline. It provides transparency into how tweets are selected, prioritized, and surfaced to users, reflecting Twitter’s move toward openness in recommendation algorithms. The repository contains the recommendation pipeline, which incorporates signals such as engagement, relevance, and content features, and demonstrates how they combine to form ranked outputs. Written primarily in...
    Downloads: 1 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • Next
MongoDB Logo MongoDB