Showing 6 open source projects for "no code"

View related business solutions
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • Automated RMM Tools | RMM Software Icon
    Automated RMM Tools | RMM Software

    Proactively monitor, manage, and support client networks with ConnectWise Automate

    Out-of-the-box scripts. Around-the-clock monitoring. Unmatched automation capabilities. Start doing more with less and exceed service delivery expectations.
    Learn More
  • 1
    nanoGPT

    nanoGPT

    The simplest, fastest repository for training/finetuning models

    NanoGPT is a minimalistic yet powerful reimplementation of GPT-style transformers created by Andrej Karpathy for educational and research use. It distills the GPT architecture into a few hundred lines of Python code, making it far easier to understand than large, production-scale implementations. The repo is organized with a training pipeline (dataset preprocessing, model definition, optimizer, training loop) and inference script so you can train a small GPT on text datasets like Shakespeare or custom corpora. It emphasizes readability and clarity: the training loop is cleanly written, and the code avoids heavy abstractions, letting students follow the architecture step by step. ...
    Downloads: 4 This Week
    Last Update:
    See Project
  • 2
    Brain Tokyo Workshop

    Brain Tokyo Workshop

    Experiments and code from Google Brain’s Tokyo research workshop

    The Brain Tokyo Workshop repository hosts a collection of research materials and experimental code developed by the Google Brain team based in Tokyo. It showcases a variety of cutting-edge projects in artificial intelligence, particularly in the areas of neuroevolution, reinforcement learning, and model interpretability. Each project explores innovative approaches to learning, prediction, and creativity in neural networks, often through unconventional or biologically inspired methods. ...
    Downloads: 5 This Week
    Last Update:
    See Project
  • 3
    Catalyst

    Catalyst

    Accelerated deep learning R&D

    Catalyst is a PyTorch framework for accelerated Deep Learning research and development. It allows you to write compact but full-featured Deep Learning pipelines with just a few lines of code. With Catalyst you get a full set of features including a training loop with metrics, model checkpointing and more, all without the boilerplate. Catalyst is focused on reproducibility, rapid experimentation, and codebase reuse so you can break the cycle of writing another regular train loop and make something totally new. Catalyst is compatible with Python 3.6+. ...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 4
    ...Installation Videos! Part 1: http://youtu.be/rnv2VLcG-eI Part 2: http://youtu.be/eFudbMWHNlQ Special thanks to Wells Oliver for the code for downloading Retrosheet files. And the Chadwick project for its Retrosheet tools. https://sourceforge.net/projects/chadwick/?source=recommended
    Downloads: 0 This Week
    Last Update:
    See Project
  • Run applications fast and securely in a fully managed environment Icon
    Run applications fast and securely in a fully managed environment

    Cloud Run is a fully-managed compute platform that lets you run your code in a container directly on top of scalable infrastructure.

    Run frontend and backend services, batch jobs, deploy websites and applications, and queue processing workloads without the need to manage infrastructure.
    Try for free
  • 5
    Pydicom by examples

    Pydicom by examples

    Basic and intermediate examples of DICOM library with Jupyter

    Basic and intermediate examples to read, modify and write DICOM files with Python code using Jupyter - To install Jupyter - https://jupyter.org/install ====== All examples are based on Pydicom. An open source library - https://pydicom.github.io/
    Downloads: 0 This Week
    Last Update:
    See Project
  • 6
    Make AsciiDoc part of your literate programming tool set. With eWEB you can weave and tangle literate programs written as AsciiDoc documents, using embedded WEB code snippets.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • Next