Open Source Mobile Operating Systems Realtime Processing Software

Realtime Processing Software for Mobile Operating Systems

Browse free open source Realtime Processing software and projects for Mobile Operating Systems below. Use the toggles on the left to filter open source Realtime Processing software by OS, license, language, programming language, and project status.

  • Level Up Your Cyber Defense with External Threat Management Icon
    Level Up Your Cyber Defense with External Threat Management

    See every risk before it hits. From exposed data to dark web chatter. All in one unified view.

    Move beyond alerts. Gain full visibility, context, and control over your external attack surface to stay ahead of every threat.
    Try for Free
  • Cloud-based help desk software with ServoDesk Icon
    Cloud-based help desk software with ServoDesk

    Full access to Enterprise features. No credit card required.

    What if You Could Automate 90% of Your Repetitive Tasks in Under 30 Days? At ServoDesk, we help businesses like yours automate operations with AI, allowing you to cut service times in half and increase productivity by 25% - without hiring more staff.
    Try ServoDesk for free
  • 1
    OpenCV

    OpenCV

    Open Source Computer Vision Library

    The Open Source Computer Vision Library has >2500 algorithms, extensive documentation and sample code for real-time computer vision. It works on Windows, Linux, Mac OS X, Android, iOS in your browser through JavaScript. Languages: C++, Python, Julia, Javascript Homepage: https://opencv.org Q&A forum: https://forum.opencv.org/ Documentation: https://docs.opencv.org Source code: https://github.com/opencv Please pay special attention to our tutorials! https://docs.opencv.org/master Books about the OpenCV are described here: https://opencv.org/books.html
    Leader badge
    Downloads: 3,200 This Week
    Last Update:
    See Project
  • 2
    Simd

    Simd

    High performance image processing library in C++

    The Simd Library is a free open source image processing library, designed for C and C++ programmers. It provides many useful high performance algorithms for image processing such as: pixel format conversion, image scaling and filtration, extraction of statistic information from images, motion detection, object detection (HAAR and LBP classifier cascades) and classification, neural network. The algorithms are optimized with using of different SIMD CPU extensions. In particular the library supports following CPU extensions: SSE, SSE2, SSE3, SSSE3, SSE4.1, SSE4.2, AVX, AVX2 and AVX-512 for x86/x64, VMX(Altivec) and VSX(Power7) for PowerPC, NEON for ARM. The Simd Library has C API and also contains useful C++ classes and functions to facilitate access to C API. The library supports dynamic and static linking, 32-bit and 64-bit Windows, Android and Linux, MSVS, G++ and Clang compilers, MSVS project and CMake build systems.
    Leader badge
    Downloads: 21 This Week
    Last Update:
    See Project
  • 3
    GPUImage

    GPUImage

    iOS framework for GPU-based image and video processing

    The GPUImage framework is a BSD-licensed iOS library that lets you apply GPU-accelerated filters and other effects to images, live camera video, and movies. In comparison to Core Image (part of iOS 5.0), GPUImage allows you to write your own custom filters, supports deployment to iOS 4.0, and has a slightly simpler interface. However, it currently lacks some of the more advanced features of Core Image, such as facial detection. GPUImage uses OpenGL ES 2.0 shaders to perform image and video manipulation much faster than could be done in CPU-bound routines. It hides the complexity of interacting with the OpenGL ES API in a simplified Objective-C interface. This interface lets you define input sources for images and video, attach filters in a chain, and send the resulting processed image or video to the screen, to a UIImage, or to a movie on disk. Images or frames of video are uploaded from source objects, which are subclasses of GPUImageOutput.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 4
    Music + Video + Animation Maker & App

    Music + Video + Animation Maker & App

    Why Music + Video + Animation Maker & App is Fun?

    Javaimagephp All-in-one video/film editor or maker makes sense as simple to use app for video/film or movie editing and animations/slideshows. It gets most of your imagination of an All-in-one video/film Animation editor / maker App. Video editing is made intuitive and simple. Lots of Special Effects ( > 55) ! For example this one http://ogena.ridoua.nu Formats supported are mp4, avi, flv, mov, flv and more. Description given image animation which seeks audio given a description. Visualization (Slideshow / Animation) of Streams (Radio: asx, pls, m3u etc.) and News Feeds (RSS, XML) This Program is protected by 1st abstract & reg. International and root sec. laws as is comes free of use like that. Give your answers alike vaks@ccwf[.]cc[.]utexas[.]edu about Ani Magix or issue your activation phase of performer@df(.)lth.s(e)
    Downloads: 6 This Week
    Last Update:
    See Project
  • Gen AI apps are built with MongoDB Atlas Icon
    Gen AI apps are built with MongoDB Atlas

    Build gen AI apps with an all-in-one modern database: MongoDB Atlas

    MongoDB Atlas provides built-in vector search and a flexible document model so developers can build, scale, and run gen AI apps without stitching together multiple databases. From LLM integration to semantic search, Atlas simplifies your AI architecture—and it’s free to get started.
    Start Free
  • 5
    GPUImage 2

    GPUImage 2

    Framework for GPU-accelerated video and image processing

    GPUImage 2 is the second generation of the GPUImage framework, an open source project for performing GPU-accelerated image and video processing on Mac, iOS, and now Linux. The original GPUImage framework was written in Objective-C and targeted Mac and iOS, but this latest version is written entirely in Swift and can also target Linux and future platforms that support Swift code. The objective of the framework is to make it as easy as possible to set up and perform realtime video processing or machine vision against image or video sources. By relying on the GPU to run these operations, performance improvements of 100X or more over CPU-bound code can be realized. This is particularly noticeable in mobile or embedded devices. On an iPhone 4S, this framework can easily process 1080p video at over 60 FPS. On a Raspberry Pi 3, it can perform Sobel edge detection on live 720p video at over 20 FPS.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • Next