Showing 2 open source projects for "random"

View related business solutions
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • Context for your AI agents Icon
    Context for your AI agents

    Crawl websites, sync to vector databases, and power RAG applications. Pre-built integrations for LLM pipelines and AI assistants.

    Build data pipelines that feed your AI models and agents without managing infrastructure. Crawl any website, transform content, and push directly to your preferred vector store. Use 10,000+ tools for RAG applications, AI assistants, and real-time knowledge bases. Monitor site changes, trigger workflows on new data, and keep your AIs fed with fresh, structured information. Cloud-native, API-first, and free to start until you need to scale.
    Try for free
  • 1
    brms

    brms

    brms R package for Bayesian generalized multivariate models using Stan

    brms is an R package by Paul Bürkner which provides a high-level interface for fitting Bayesian multilevel (i.e. mixed effects) models, generalized linear / non-linear / multivariate models using Stan as the backend. It allows R users to specify complex Bayesian models using formula syntax similar to lme4 but with far more flexibility (distributions, link functions, hierarchical structure, nonlinear terms, etc.). It supports model diagnostics, posterior predictive checking, model comparison,...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 2
    benchm-ml

    benchm-ml

    A benchmark of commonly used open source implementations

    ...It targets large scale settings by varying the number of observations (n) up to millions and the number of features (after expansion) to about a thousand, to stress test different implementations. The benchmarks cover algorithms like logistic regression, random forest, gradient boosting, and deep neural networks, and they compare across toolkits such as scikit-learn, R packages, xgboost, H2O, Spark MLlib, etc. The repository is structured in logical folders, each corresponding to algorithm categories.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • Next