Showing 9 open source projects for "machine"

View related business solutions
  • AI-generated apps that pass security review Icon
    AI-generated apps that pass security review

    Stop waiting on engineering. Build production-ready internal tools with AI—on your company data, in your cloud.

    Retool lets you generate dashboards, admin panels, and workflows directly on your data. Type something like “Build me a revenue dashboard on my Stripe data” and get a working app with security, permissions, and compliance built in from day one. Whether on our cloud or self-hosted, create the internal software your team needs without compromising enterprise standards or control.
    Try Retool free
  • Cut Cloud Costs with Google Compute Engine Icon
    Cut Cloud Costs with Google Compute Engine

    Save up to 91% with Spot VMs and get automatic sustained-use discounts. One free VM per month, plus $300 in credits.

    Save on compute costs with Compute Engine. Reduce your batch jobs and workload bill 60-91% with Spot VMs. Compute Engine's committed use offers customers up to 70% savings through sustained use discounts. Plus, you get one free e2-micro VM monthly and $300 credit to start.
    Try Compute Engine
  • 1
    mlr3

    mlr3

    mlr3: Machine Learning in R - next generation

    mlr3 is a modern, object-oriented R framework for machine learning. It provides core abstractions (tasks, learners, resamplings, measures, pipelines) implemented using R6 classes, enabling extensible, composable machine learning workflows. It focuses on clean design, scalability (large datasets), and integration into the wider R ecosystem via extension packages. Users can do classification, regression, survival analysis, clustering, hyperparameter tuning, benchmarking etc., often via companion packages.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 2
    caret

    caret

    caret (Classification And Regression Training) R package

    The caret (Classification And Regression Training) R package streamlines the process of building predictive machine learning models. It provides uniform interfaces for model training, tuning, evaluation, preprocessing, and variable importance. With support for over 200 models, caret is foundational for R workflows in modeling and machine learning.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 3
    sparklyr

    sparklyr

    R interface for Apache Spark

    sparklyr is an R package that provides seamless interfacing with Apache Spark clusters—either local or remote—while letting users write code in familiar R paradigms. It supplies a dplyr-compatible backend, Spark machine learning pipelines, SQL integration, and I/O utilities to manipulate and analyze large datasets distributed across cluster environments.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 4
    OmicSelector

    OmicSelector

    Feature selection and deep learning modeling for omic biomarker study

    OmicSelector is an environment, Docker-based web application, and R package for biomarker signature selection (feature selection) from high-throughput experiments and others. It was initially developed for miRNA-seq (small RNA, smRNA-seq; hence the name was miRNAselector), RNA-seq and qPCR, but can be applied for every problem where numeric features should be selected to counteract overfitting of the models. Using our tool, you can choose features, like miRNAs, with the most significant...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Cut Data Warehouse Costs up to 54% with BigQuery Icon
    Cut Data Warehouse Costs up to 54% with BigQuery

    Migrate from Snowflake, Databricks, or Redshift with free migration tools. Exabyte scale without the Exabyte price.

    BigQuery delivers up to 54% lower TCO than cloud alternatives. Migrate from legacy or competing warehouses using free BigQuery Migration Service with automated SQL translation. Get serverless scale with no infrastructure to manage, compressed storage, and flexible pricing—pay per query or commit for deeper discounts. New customers get $300 in free credit.
    Try BigQuery Free
  • 5
    mlr

    mlr

    Machine Learning in R

    R does not define a standardized interface for its machine-learning algorithms. Therefore, for any non-trivial experiments, you need to write lengthy, tedious, and error-prone wrappers to call the different algorithms and unify their respective output. {mlr} provides this infrastructure so that you can focus on your experiments! The framework provides supervised methods like classification, regression, and survival analysis along with their corresponding evaluation and optimization methods, as well as unsupervised methods like clustering. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 6
    Covidex

    Covidex

    Ultra fast and accurate subtyping tool of viral genomes.

    Viral subtypes or clades represent clusters among isolates from the global population of a defined species. Subtypification is relevant for studies on virus epidemiology, evolution and pathogenesis. In this sense, Covidex was developed as an open source alignment-free machine learning subtyping tool. It is a shiny app that allows fast and accurate classification of viral genomes in pre-defined clusters. If more than 1000 sequences are loaded the tool will run in multithread mode. Capable of classifying 16000 genome sequences in less than a minute (AMD Ryzen 7 1700 8-core Processor 3 GHz) For a Web-based version of the app (only for small datasets: 100 seqs max) please go to http://covidex.unlu.edu.ar If you use Covidex please consider citing the following preprint: https://biorxiv.org/cgi/content/short/2020.08.21.261347v1 If you think my work is useful you can buy me a coffee! ...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 7
    benchm-ml

    benchm-ml

    A benchmark of commonly used open source implementations

    This repository is designed to provide a minimal benchmark framework comparing commonly used machine learning libraries in terms of scalability, speed, and classification accuracy. The focus is on binary classification tasks without missing data, where inputs can be numeric or categorical (after one-hot encoding). It targets large scale settings by varying the number of observations (n) up to millions and the number of features (after expansion) to about a thousand, to stress test different implementations. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 8
    Data Science Specialization

    Data Science Specialization

    Course materials for the Data Science Specialization on Coursera

    ...The repository is designed as a shared space for code examples, datasets, and instructional materials, helping learners follow along with lectures and assignments. It spans essential topics such as R programming, data cleaning, exploratory data analysis, statistical inference, regression models, machine learning, and practical data science projects. By providing centralized resources, the repo makes it easier for students to practice concepts and replicate examples from the curriculum. It also offers a structured view of how multiple disciplines—programming, statistics, and applied data analysis—come together in a professional workflow.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 9
    ExData Plotting1

    ExData Plotting1

    Plotting Assignment 1 for Exploratory Data Analysis

    This repository explores household energy usage over time using the “Individual household electric power consumption” dataset from the UC Irvine Machine Learning Repository. The dataset covers nearly four years of minute-level measurements, including power consumption, voltage, current intensity, and detailed sub-metering values for different household areas. For analysis, focus is placed on a two-day period in February 2007, highlighting short-term consumption trends. The data requires careful handling due to its size of more than 2 million rows and coded missing values. ...
    Downloads: 2 This Week
    Last Update:
    See Project
  • MongoDB Atlas runs apps anywhere Icon
    MongoDB Atlas runs apps anywhere

    Deploy in 115+ regions with the modern database for every enterprise.

    MongoDB Atlas gives you the freedom to build and run modern applications anywhere—across AWS, Azure, and Google Cloud. With global availability in over 115 regions, Atlas lets you deploy close to your users, meet compliance needs, and scale with confidence across any geography.
    Start Free
  • Previous
  • You're on page 1
  • Next
MongoDB Logo MongoDB
Gen AI apps are built with MongoDB Atlas
Atlas offers built-in vector search and global availability across 125+ regions. Start building AI apps faster, all in one place.
Try Free →