Open Source Windows Quantum Computing Software

Quantum Computing Software for Windows

View 5 business solutions

Browse free open source Quantum Computing software and projects for Windows below. Use the toggles on the left to filter open source Quantum Computing software by OS, license, language, programming language, and project status.

  • Gen AI apps are built with MongoDB Atlas Icon
    Gen AI apps are built with MongoDB Atlas

    Build gen AI apps with an all-in-one modern database: MongoDB Atlas

    MongoDB Atlas provides built-in vector search and a flexible document model so developers can build, scale, and run gen AI apps without stitching together multiple databases. From LLM integration to semantic search, Atlas simplifies your AI architecture—and it’s free to get started.
    Start Free
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • 1
    NumPy

    NumPy

    The fundamental package for scientific computing with Python

    Fast and versatile, the NumPy vectorization, indexing, and broadcasting concepts are the de-facto standards of array computing today. NumPy offers comprehensive mathematical functions, random number generators, linear algebra routines, Fourier transforms, and more. NumPy supports a wide range of hardware and computing platforms, and plays well with distributed, GPU, and sparse array libraries. The core of NumPy is well-optimized C code. Enjoy the flexibility of Python with the speed of compiled code. NumPy’s high level syntax makes it accessible and productive for programmers from any background or experience level. Distributed under a liberal BSD license, NumPy is developed and maintained publicly on GitHub by a vibrant, responsive, and diverse community. Nearly every scientist working in Python draws on the power of NumPy. NumPy brings the computational power of languages like C and Fortran to Python, a language much easier to learn and use.
    Downloads: 93 This Week
    Last Update:
    See Project
  • 2
    Qiskit

    Qiskit

    Qiskit is an open-source SDK for working with quantum computers

    Qiskit [kiss-kit] is an open-source SDK for working with quantum computers at the level of pulses, circuits, and application modules. When you are looking to start Qiskit, you have two options. You can start Qiskit locally, which is much more secure and private, or you get started with Jupyter Notebooks hosted in IBM Quantum Lab. Qiskit includes a comprehensive set of quantum gates and a variety of pre-built circuits so users at all levels can use Qiskit for research and application development. The transpiler translates Qiskit code into an optimized circuit using a backend’s native gate set, allowing users to program for any quantum processor or processor architecture with minimal inputs. Users can run and schedule jobs on real quantum processors, and employ Qiskit Runtime to orchestrate quantum programs on cloud-based CPUs, QPUs, and GPUs.
    Downloads: 19 This Week
    Last Update:
    See Project
  • 3
    QuCAT

    QuCAT

    Quantum Circuit Analyzer Tool

    QuCAT stands for Quantum Circuit Analyzer Tool. This open source python library provides standard analysis tools for superconducting electronic circuits, built around Josephson junctions. QuCAT features an intuitive graphical or programmatical interface to create circuits, the ability to compute their Hamiltonian, and a set of complimentary functionalities such as calculating dissipation rates or visualizing current flows in the circuit. QuCAT currently supports quantization in the basis of normal modes.
    Downloads: 7 This Week
    Last Update:
    See Project
  • 4
    Cirq

    Cirq

    A python framework for creating, editing, and invoking NISQ

    Cirq is a Python library for writing, manipulating, and optimizing quantum circuits and running them against quantum computers and simulators.
    Downloads: 2 This Week
    Last Update:
    See Project
  • Business Automation Software for SMBs Icon
    Business Automation Software for SMBs

    Fed up with not having the time, money and resources to grow your business?

    The only software you need to increase cash flow, optimize resource utilization, and take control of your assets and inventory.
    Learn More
  • 5
    Quantum++

    Quantum++

    Modern C++ quantum computing library

    Quantum++ is a modern C++ general-purpose quantum computing library, composed solely of template header files. Quantum++ is written in standard C++17 and has very low external dependencies, using only the Eigen 3 linear algebra header-only template library and, if available, the OpenMP multiprocessing library. Quantum++ is not restricted to qubit systems or specific quantum information processing tasks, being capable of simulating arbitrary quantum processes. The main design factors taken in consideration were ease of use, high portability, and high performance. The library's simulation capabilities are only restricted by the amount of available physical memory. On a typical machine (Intel i5 8Gb RAM) Quantum++ can successfully simulate the evolution of 25 qubits in a pure state or of 12 qubits in a mixed state reasonably fast.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 6
    OpenQASM

    OpenQASM

    Quantum assembly language for extended quantum circuits

    OpenQASM is an imperative programming language designed for near-term quantum computing algorithms and applications. Quantum programs are described using the measurement-based quantum circuit model with support for classical feed-forward flow control based on measurement outcomes. OpenQASM presents a parameterized set of physical logic gates and concurrent real-time classical computations. Its main goal is to serve as an intermediate representation for higher-level compilers to communicate with quantum hardware. Allowances have been made for human usability. In particular, the language admits different representations of the same program as it is transformed from a high-level description to a pulse representation.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 7
    Q-CTRL Open Controls

    Q-CTRL Open Controls

    Q-CTRL Open Controls

    Q-CTRL Open Controls is an open-source Python package that makes it easy to create and deploy established error-robust quantum control protocols from the open literature. The aim of the package is to be the most comprehensive library of published and tested quantum control techniques developed by the community, with easy-to-use export functions allowing users to deploy these controls on.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 8
    QuTiP

    QuTiP

    QuTiP: Quantum Toolbox in Python

    QuTiP is open-source software for simulating the dynamics of open quantum systems. The QuTiP library depends on the excellent Numpy, Scipy, and Cython numerical packages. In addition, graphical output is provided by Matplotlib. QuTiP aims to provide user-friendly and efficient numerical simulations of a wide variety of Hamiltonians, including those with arbitrary time-dependence, commonly found in a wide range of physics applications such as quantum optics, trapped ions, superconducting circuits, and quantum nanomechanical resonators. QuTiP is freely available for use and/or modification on all major platforms such as Linux, Mac OSX, and Windows*. Being free of any licensing fees, QuTiP is ideal for exploring quantum mechanics and dynamics in the classroom.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 9
    qaqarot

    qaqarot

    Quantum Computer Library for Everyone

    The Blueqat project has been renamed the Qaqarot Project because of the branding strategy of blueqat inc.
    Downloads: 1 This Week
    Last Update:
    See Project
  • Run applications fast and securely in a fully managed environment Icon
    Run applications fast and securely in a fully managed environment

    Cloud Run is a fully-managed compute platform that lets you run your code in a container directly on top of scalable infrastructure.

    Run frontend and backend services, batch jobs, deploy websites and applications, and queue processing workloads without the need to manage infrastructure.
    Try for free
  • 10
    3 levels density matrix simulation. Currently it enables you to get time solvetions for three-level systems. It's generates files with time solvetions for density matrix. In the future It will solve multilevel atomic system on MPI.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 11
    A C/C++ library for Cavity Quantum Electrodynamics Simulations. CQEDSimulator is a framework that provides all basic mathematical elements and methods to perform quantum numerical simulations. It's crossplatform, that works on Windows, Linux, Mac...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 12

    AnharmoniCAOS

    Cagliari-Orsay model for anharmonic molecular spectra in 2nd order PT

    Given dynamical coefficients and/or derivatives of the ionic potential with respect to normal (harmonic) vibrational modes, compute anharmonic energies and electric dipole-permitted transitions and intensities using nearly-degenerate perturbation theory (i.e. properly accounting for Fermi and Darling-Dennison resonances).
    Downloads: 0 This Week
    Last Update:
    See Project
  • 13
    Azure Quantum Development Kit

    Azure Quantum Development Kit

    Azure Quantum Development Kit

    Azure Quantum Development Kit, including the Q# programming language, resource estimator, and Quantum Katas. The playground is a small website that loads the Q# editor, compiler, samples, katas, and documentation for the standard library. It's a way to manually validate any changes you make to these components. The easiest way to develop in this repo is to use VS Code. When you open the project root, by default VS Code will recommend you install the extensions listed in .vscode/extensions.json. These extensions provide language services for editing, as well as linters and formatters to ensure the code meets the requirements (which are checked by the build.py script and CI).
    Downloads: 0 This Week
    Last Update:
    See Project
  • 14
    BQSKit

    BQSKit

    Berkeley Quantum Synthesis Toolkit

    The Berkeley Quantum Synthesis Toolkit (BQSKit) [bis • kit] is a powerful and portable quantum compiler framework. It can be used with ease to compile quantum programs to efficient physical circuits for any QPU. A standard workflow utilizing BQSKit consists of loading a program into the framework, modeling the target QPU, compiling the program, and exporting the resulting circuit.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 15
    Dipoles-Cavity Interaction
    <Temporarily Unavailable Online> This project is aiming at completing a library of open codes (mainly based on MATLAB at present) to deal with Dipoles-Cavity Interaction problems. Common methods, including Green's function method and Master Equation method et al, will be applied to the coding. Samples of calculations and standard comparison with publications using the library will be given for demonstration of the usage. Interface to some commonly used software, such as Lumerical FDTD Solutions, will also be developed in the project. This project is titled under nanophotonics, quantum optics, nano-optics, computational physics and physics.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 16

    Entanglement of Photons

    Time Travel is possible

    Jay Olson and Timothy Ralph recently put forward a theory that entangled photons can travel through time or at least take a short-cut through time using their method. As I understand it, the first photon is destroyed when measured however an exact copy is created in the future using qubits from the original photon. This is a simulation using one of their examples. I hope it's accurate and my apologies if it's not. Email: tmckeown@nbtv.ca
    Downloads: 0 This Week
    Last Update:
    See Project
  • 17
    FermiFab
    Repository moving to https://github.com/cmendl/fermifab ! A quantum physics toolbox for small fermionic systems. Keywords: quantum mechanics, reduced density matrices, Slater determinants, second quantization, creation and annihilation operators
    Downloads: 0 This Week
    Last Update:
    See Project
  • 18
    LabRAD Experimenter
    A python package that allows scientists to easily create configurable and reusable experiments. Intended for use with the LabRAD framework. Developed by the Haeffner group studying quantum simulation at UC Berkeley. Wiki at lrexp.wikispaces.com
    Downloads: 0 This Week
    Last Update:
    See Project
  • 19

    Matrix Product State (MPS) Simulations

    Numerical routines for variational matrix product state simulations.

    Open Source MPS (OSMPS) is a collection of numerical routines for performing tensor network algorithms to simulate entangled, 1D many-body quantum systems. Our applications reach from ground state and excited states for statics to the dynamics of time-dependent Hamiltonians. We offer various time evolution methods with an emphasis on the support of long-range interactions through the matrix product state formalism. For more algorithms, see the list of features below. Please cite "M. L. Wall and L. D. Carr, New J. Phys. 14, 125015 (2012)" and "D. Jaschke, M. L. Wall, and L. D. Carr, Computer Physics Communications 225, 59–91 (2018)" if your publication involves OSMPS.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 20
    Mitiq

    Mitiq

    Mitiq is an open source toolkit for implementing error mitigation

    Mitiq is a Python toolkit for implementing error mitigation techniques on quantum computers. Current quantum computers are noisy due to interactions with the environment, imperfect gate applications, state preparation and measurement errors, etc. Error mitigation seeks to reduce these effects at the software level by compiling quantum programs in clever ways.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 21

    NBO Analyzer

    Analyze output of NBO computations

    Downloads: 0 This Week
    Last Update:
    See Project
  • 22
    OPEN GENERAL SCIENTIFIC INTERFACES
    OPEN GENERAL SCIENTIFIC INTERFACES homepage : http://www.opengsi.org
    Downloads: 0 This Week
    Last Update:
    See Project
  • 23
    OpenFermion

    OpenFermion

    The electronic structure package for quantum computers

    OpenFermion is an open source library for compiling and analyzing quantum algorithms to simulate fermionic systems, including quantum chemistry. Among other functionalities, this version features data structures and tools for obtaining and manipulating representations of fermionic and qubit Hamiltonians. For more information, see our release paper. Currently, OpenFermion is tested on Mac, Windows, and Linux. We recommend using Mac or Linux because the electronic structure plugins are only compatible on these platforms. However, for those who would like to use Windows, or for anyone having other difficulties with installing OpenFermion or its plugins, we have provided a Docker image and usage instructions in the docker folder. The Docker image provides a virtual environment with OpenFermion and select plugins pre-installed. The Docker installation should run on any operating system.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 24
    Paddle Quantum

    Paddle Quantum

    Paddle Quantum

    Paddle Quantum (量桨) is the world's first cloud-integrated quantum machine learning platform based on Baidu PaddlePaddle. It supports the building and training of quantum neural networks, making PaddlePaddle the first deep-learning framework in China. Paddle Quantum is feature-rich and easy to use. It provides comprehensive API documentation and tutorials help users get started right away. Paddle Quantum aims at establishing a bridge between artificial intelligence (AI) and quantum computing (QC). It has been utilized for developing several quantum machine learning applications. With the PaddlePaddle deep learning platform empowering QC, Paddle Quantum provides strong support for the scientific research community and developers in the field to easily develop QML applications. Moreover, it provides a learning platform for quantum computing enthusiasts.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 25
    Perceval

    Perceval

    An open source framework for programming photonic quantum computers

    An open-source framework for programming photonic quantum computers. Through a simple object-oriented Python API, Perceval provides tools for composing circuits from linear optical components, defining single-photon sources, manipulating Fock states, running simulations, reproducing published experimental papers and experimenting with a new generation of quantum algorithms. It aims to be a companion tool for developing photonic circuits – for simulating and optimizing their design, modeling both the ideal and realistic behaviors, and proposing a normalized interface to control them through the concept of backends.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • 2
  • Next