Showing 7 open source projects for "yolo"

View related business solutions
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • Context for your AI agents Icon
    Context for your AI agents

    Crawl websites, sync to vector databases, and power RAG applications. Pre-built integrations for LLM pipelines and AI assistants.

    Build data pipelines that feed your AI models and agents without managing infrastructure. Crawl any website, transform content, and push directly to your preferred vector store. Use 10,000+ tools for RAG applications, AI assistants, and real-time knowledge bases. Monitor site changes, trigger workflows on new data, and keep your AIs fed with fresh, structured information. Cloud-native, API-first, and free to start until you need to scale.
    Try for free
  • 1
    Open Vision Agents by Stream

    Open Vision Agents by Stream

    Build Vision Agents quickly with any model or video provider

    Open Vision Agents by Stream is an open source framework from Stream for building real time, multimodal AI agents that watch, listen, and respond to live video streams. It focuses on combining video understanding models, such as YOLO and Roboflow based detectors, with real time large language models like OpenAI Realtime and Gemini Live to create interactive experiences. The framework uses Stream’s ultra low latency edge network so agents can join sessions quickly and maintain very low audio and video latency while processing frames and generating responses. Developers work with an agent abstraction that connects video edge providers, LLMs, and processors into pipelines, making it easier to orchestrate tasks like object detection, pose estimation, and conversational guidance. ...
    Downloads: 14 This Week
    Last Update:
    See Project
  • 2
    Datumaro

    Datumaro

    Dataset Management Framework, a Python library and a CLI tool to build

    Datumaro is a flexible Python-based dataset management framework and command-line tool for building, analyzing, transforming, and converting computer vision datasets in many popular formats. It supports importing and exporting annotations and images across a wide variety of standards like COCO, PASCAL VOC, YOLO, ImageNet, Cityscapes, and many more, enabling easy integration with different training pipelines and tools. Datumaro makes it easy to merge datasets, split them into training/validation/test subsets, filter or transform annotations, and validate annotation quality — all while preserving metadata and supporting detailed statistics. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 3
    pipeless

    pipeless

    A computer vision framework to create and deploy apps in minutes

    ...You provide some functions that are executed for new video frames and Pipeless takes care of everything else. You can easily use industry-standard models, such as YOLO, or load your custom model in one of the supported inference runtimes. Pipeless ships some of the most popular inference runtimes, such as the ONNX Runtime, allowing you to run inference with high performance on CPU or GPU out-of-the-box. You can deploy your Pipeless application with a single command to edge and IoT devices or the cloud.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 4
    YOLOX

    YOLOX

    YOLOX is a high-performance anchor-free YOLO, exceeding yolov3~v5

    YOLOX is a high-performance anchor-free YOLO, exceeding yolov3~v5 with MegEngine, ONNX, TensorRT, ncnn, and OpenVINO supported. YOLOX is an anchor-free version of YOLO, with a simpler design but better performance! It aims to bridge the gap between research and industrial communities. Prepare your own dataset with images and labels first. For labeling images, you can use tools like Labelme or CVAT.
    Downloads: 27 This Week
    Last Update:
    See Project
  • Reach Your Audience with Rise Vision, the #1 Cloud Digital Signage Software Solution Icon
    Reach Your Audience with Rise Vision, the #1 Cloud Digital Signage Software Solution

    K-12 Schools, Higher Education, Businesses, Restaurants

    Rise Vision is the #1 digital signage company, offering easy-to-use cloud digital signage software compatible with any player across multiple screens. Forget about static displays. Save time and boost sales with 500+ customizable content templates for your screens. If you ever need help, get free training and exceptionally fast support.
    Learn More
  • 5
    JSON2YOLO

    JSON2YOLO

    Convert JSON annotations into YOLO format.

    Explore our state-of-the-art AI architecture to train and deploy your highly accurate AI models like a pro. This directory contains label import/export software developed by Ultralytics LLC, and is freely available for redistribution under the GPL-3.0 license. Ultralytics is a U.S.-based particle physics and AI startup with over 6 years of expertise supporting government, academic, and business clients. We offer a wide range of vision AI services, spanning from simple expert advice up to the...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 6
    LabelImg

    LabelImg

    Graphical image annotation tool and label object bounding boxes

    ...It is written in Python and uses Qt for its graphical interface. Annotations are saved as XML files in PASCAL VOC format, the format used by ImageNet. Besides, it also supports YOLO and CreateML formats. Linux/Ubuntu/Mac requires at least Python 2.6 and has been tested with PyQt 4.8. However, Python 3 or above and PyQt5 are strongly recommended. Virtualenv can avoid a lot of the QT / Python version issues. Build and launch using the instructions. Click 'Change default saved annotation folder' in Menu/File. Click 'Open Dir'. ...
    Downloads: 114 This Week
    Last Update:
    See Project
  • 7
    mAP

    mAP

    Evaluates the performance of your neural net for object recognition

    In practice, a higher mAP value indicates a better performance of your neural net, given your ground truth and set of classes. The performance of your neural net will be judged using the mAP criteria defined in the PASCAL VOC 2012 competition. We simply adapted the official Matlab code into Python (in our tests they both give the same results). First, your neural net detection-results are sorted by decreasing confidence and are assigned to ground-truth objects. We have "a match" when they...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • Next