Showing 35 open source projects for "parallel language"

View related business solutions
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • Next-Gen Encryption for Post-Quantum Security | CLEAR by Quantum Knight Icon
    Next-Gen Encryption for Post-Quantum Security | CLEAR by Quantum Knight

    Lock Down Any Resource, Anywhere, Anytime

    CLEAR by Quantum Knight is a FIPS-140-3 validated encryption SDK engineered for enterprises requiring top-tier security. Offering robust post-quantum cryptography, CLEAR secures files, streaming media, databases, and networks with ease across over 30 modern platforms. Its compact design, smaller than a single smartphone image, ensures maximum efficiency and low energy consumption.
    Learn More
  • 1
    vLLM

    vLLM

    A high-throughput and memory-efficient inference and serving engine

    vLLM is a fast and easy-to-use library for LLM inference and serving. High-throughput serving with various decoding algorithms, including parallel sampling, beam search, and more.
    Downloads: 48 This Week
    Last Update:
    See Project
  • 2
    Megatron

    Megatron

    Ongoing research training transformer models at scale

    Megatron is a large, powerful transformer developed by the Applied Deep Learning Research team at NVIDIA. This repository is for ongoing research on training large transformer language models at scale. We developed efficient, model-parallel (tensor, sequence, and pipeline), and multi-node pre-training of transformer based models such as GPT, BERT, and T5 using mixed precision. Megatron is also used in NeMo Megatron, a framework to help enterprises overcome the challenges of building and training sophisticated natural language processing models with billions and trillions of parameters. ...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 3
    CogVLM

    CogVLM

    A state-of-the-art open visual language model

    CogVLM is an open-source visual–language model suite—and its GUI-oriented sibling CogAgent—aimed at image understanding, grounding, and multi-turn dialogue, with optional agent actions on real UI screenshots. The flagship CogVLM-17B combines ~10B visual parameters with ~7B language parameters and supports 490×490 inputs; CogAgent-18B extends this to 1120×1120 and adds plan/next-action outputs plus grounded operation coordinates for GUI tasks.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 4
    Stanza

    Stanza

    Stanford NLP Python library for many human languages

    ...Starting from raw text to syntactic analysis and entity recognition, Stanza brings state-of-the-art NLP models to languages of your choosing. Stanza is a Python natural language analysis package. It contains tools, which can be used in a pipeline, to convert a string containing human language text into lists of sentences and words, to generate base forms of those words, their parts of speech and morphological features, to give a syntactic structure dependency parse, and to recognize named entities. The toolkit is designed to be parallel among more than 70 languages, using the Universal Dependencies formalism. ...
    Downloads: 4 This Week
    Last Update:
    See Project
  • All-in-one security tool helps you prevent ransomware and breaches. Icon
    All-in-one security tool helps you prevent ransomware and breaches.

    SIEM + Detection and Response for IT Teams

    Blumira’s detection and response platform enables faster resolution of threats to help you stop ransomware attacks and prevent data breaches. We surface real threats, providing meaningful findings so you know what to prioritize. With our 3-step rapid response, you can automatically block known threats, use our playbooks for easy remediation, or contact our security team for additional guidance. Our responsive security team helps with onboarding, triage and ongoing consultations to continuously help your organization improve your security coverage.
    Learn More
  • 5
    MiniMax-01

    MiniMax-01

    Large-language-model & vision-language-model based on Linear Attention

    MiniMax-01 is the official repository for two flagship models: MiniMax-Text-01, a long-context language model, and MiniMax-VL-01, a vision-language model built on top of it. MiniMax-Text-01 uses a hybrid attention architecture that blends Lightning Attention, standard softmax attention, and Mixture-of-Experts (MoE) routing to achieve both high throughput and long-context reasoning. It has 456 billion total parameters with 45.9 billion activated per token and is trained with advanced parallel strategies such as LASP+, varlen ring attention, and Expert Tensor Parallelism, enabling a training context of 1 million tokens and up to 4 million tokens at inference. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 6
    Droidrun

    Droidrun

    Powerful framework for controlling Android and iOS devices

    Droidrun is a native mobile agent platform that gives users natural-language control over real Android devices to automate any mobile app workflow, from logins and bookings to purchases and data extraction, including access to mobile-only content behind app logins, rate limits, or platform restrictions. Its cloud offering lets users spin up agents in seconds with preinstalled apps, run tasks in parallel across multiple devices, and compose complex, multi-step conditional workflows using conversational commands; recorded workflows can be auto-replayed at high speed. ...
    Downloads: 13 This Week
    Last Update:
    See Project
  • 7
    Atropos

    Atropos

    Language Model Reinforcement Learning Environments frameworks

    ...It provides foundational tooling for asynchronous RL loops where environment services communicate with trainers and inference engines, enabling complex workflow orchestration in distributed and parallel setups. This framework facilitates experimentation with RLHF (Reinforcement Learning from Human Feedback), RLAIF, or multi-turn training approaches by abstracting environment logic, scoring, and logging into reusable components.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 8
    Colossal-AI

    Colossal-AI

    Making large AI models cheaper, faster and more accessible

    ...However, distributed training, especially model parallelism, often requires domain expertise in computer systems and architecture. It remains a challenge for AI researchers to implement complex distributed training solutions for their models. Colossal-AI provides a collection of parallel components for you. We aim to support you to write your distributed deep learning models just like how you write your model on your laptop.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 9
    higgsfield

    higgsfield

    Fault-tolerant, highly scalable GPU orchestration

    Higgsfield is an open-source, fault-tolerant, highly scalable GPU orchestration, and a machine learning framework designed for training models with billions to trillions of parameters, such as Large Language Models (LLMs).
    Downloads: 1 This Week
    Last Update:
    See Project
  • SIEM | API Security | Log Management Software Icon
    SIEM | API Security | Log Management Software

    AI-Powered Security and IT Operations Without Compromise.

    Built on the Graylog Platform, Graylog Security is the industry’s best-of-breed threat detection, investigation, and response (TDIR) solution. It simplifies analysts’ day-to-day cybersecurity activities with an unmatched workflow and user experience while simultaneously providing short- and long-term budget flexibility in the form of low total cost of ownership (TCO) that CISOs covet. With Graylog Security, security analysts can:
    Learn More
  • 10
    magentic

    magentic

    Seamlessly integrate LLMs as Python functions

    Easily integrate Large Language Models into your Python code. Simply use the @prompt and @chatprompt decorators to create functions that return structured output from the LLM. Mix LLM queries and function calling with regular Python code to create complex logic.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 11
    fairseq2

    fairseq2

    FAIR Sequence Modeling Toolkit 2

    ...It supports multi-GPU and multi-node distributed training using DDP, FSDP, and tensor parallelism, capable of scaling up to 70B+ parameter models. The framework integrates seamlessly with PyTorch 2.x features such as torch.compile, Fully Sharded Data Parallel (FSDP), and modern configuration management.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 12
    DeepEval
    DeepEval is a simple-to-use, open-source LLM evaluation framework, for evaluating and testing large-language model systems. It is similar to Pytest but specialized for unit testing LLM outputs. DeepEval incorporates the latest research to evaluate LLM outputs based on metrics such as G-Eval, hallucination, answer relevancy, RAGAS, etc., which uses LLMs and various other NLP models that run locally on your machine for evaluation. Whether your application is implemented via RAG or fine-tuning,...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 13
    LangExtract

    LangExtract

    A Python library for extracting structured information

    ...LangExtract supports a wide range of models, including Google Gemini, OpenAI GPT, and local LLMs via Ollama, making it adaptable to different deployment environments and compliance needs. The system excels at handling long documents using optimized chunking, multi-pass extraction, and parallel processing to ensure both high recall and structured consistency.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 14
    SCons

    SCons

    A software construction tool

    SCons is a software construction tool that is a superior alternative to the classic "Make" build tool that we all know and love. SCons is implemented as a Python script and set of modules, and SCons "configuration files" are actually executed as Python scripts. This gives SCons many powerful capabilities not found in other software build tools. We make SCons available in three distinct packages, for different purposes. - The scons package is the basic package to install SCons. You...
    Leader badge
    Downloads: 2,349 This Week
    Last Update:
    See Project
  • 15
    vits_chinese

    vits_chinese

    Best practice TTS based on BERT and VITS

    vits_chinese is an implementation of the VITS end-to-end text-to-speech (TTS) architecture tailored for Chinese (and possibly multilingual) speech synthesis. VITS is a model combining variational autoencoders (VAEs), normalizing flows, adversarial learning, and a stochastic duration predictor — a design that enables generation of natural, expressive speech, capturing variations in rhythm and prosody. By customizing or porting VITS for Chinese, this project aims to produce high-quality TTS...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 16
    Petals

    Petals

    Run 100B+ language models at home, BitTorrent-style

    Parallel inference reaches hundreds of tokens/sec. Beyond classic language model APIs — you can employ any fine-tuning and sampling methods, execute custom paths through the model, or see its hidden states. You get the comforts of an API with the flexibility of PyTorch. You can also host BLOOMZ, a version of BLOOM fine-tuned to follow human instructions in the zero-shot regime — just replace bloom-petals with bloomz-petals.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 17
    Medusa

    Medusa

    Framework for Accelerating LLM Generation with Multiple Decoding Heads

    Medusa is a framework aimed at accelerating the generation capabilities of Large Language Models (LLMs) by employing multiple decoding heads. This approach allows for parallel processing during text generation, significantly enhancing throughput and reducing response times. Medusa is designed to be simple to implement and integrates with existing LLM infrastructures, making it a practical solution for scaling LLM applications.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 18
    text-dedup

    text-dedup

    All-in-one text de-duplication

    ...This is especially useful for NLP tasks where duplicated training data can skew model performance. text-dedup scales to billions of documents and offers tools for chunking, hashing, and comparing text efficiently with low memory usage. It supports Jaccard similarity thresholding, parallel execution, and flexible deduplication strategies, making it ideal for cleaning web-scraped data, language model training datasets, or document archives.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 19
    GPT-NeoX

    GPT-NeoX

    Implementation of model parallel autoregressive transformers on GPUs

    This repository records EleutherAI's library for training large-scale language models on GPUs. Our current framework is based on NVIDIA's Megatron Language Model and has been augmented with techniques from DeepSpeed as well as some novel optimizations. We aim to make this repo a centralized and accessible place to gather techniques for training large-scale autoregressive language models, and accelerate research into large-scale training. For those looking for a TPU-centric codebase, we...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 20
    TextBox

    TextBox

    A text generation library with pre-trained language models github.com

    TextBox 2.0 is an up-to-date text generation library based on Python and PyTorch focusing on building a unified and standardized pipeline for applying pre-trained language models to text generation. From a task perspective, we consider 13 common text generation tasks such as translation, story generation, and style transfer, and their corresponding 83 widely-used datasets. From a model perspective, we incorporate 47 pre-trained language models/modules covering the categories of general, translation, Chinese, dialogue, controllable, distilled, prompting, and lightweight models (modules). ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 21
    Fairseq

    Fairseq

    Facebook AI Research Sequence-to-Sequence Toolkit written in Python

    Fairseq(-py) is a sequence modeling toolkit that allows researchers and developers to train custom models for translation, summarization, language modeling and other text generation tasks. We provide reference implementations of various sequence modeling papers. Recent work by Microsoft and Google has shown that data parallel training can be made significantly more efficient by sharding the model parameters and optimizer state across data parallel workers. These ideas are encapsulated in the new FullyShardedDataParallel (FSDP) wrapper provided by fairscale. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 22
    GPT Neo

    GPT Neo

    An implementation of model parallel GPT-2 and GPT-3-style models

    An implementation of model & data parallel GPT3-like models using the mesh-tensorflow library. If you're just here to play with our pre-trained models, we strongly recommend you try out the HuggingFace Transformer integration. Training and inference is officially supported on TPU and should work on GPU as well. This repository will be (mostly) archived as we move focus to our GPU-specific repo, GPT-NeoX. NB, while neo can technically run a training step at 200B+ parameters, it is very...
    Downloads: 8 This Week
    Last Update:
    See Project
  • 23
    FARM

    FARM

    Fast & easy transfer learning for NLP

    ...With FARM you can build fast proofs-of-concept for tasks like text classification, NER or question answering and transfer them easily into production. Easy fine-tuning of language models to your task and domain language. AMP optimizers (~35% faster) and parallel preprocessing (16 CPU cores => ~16x faster). Modular design of language models and prediction heads. Switch between heads or combine them for multitask learning. Full Compatibility with HuggingFace Transformers' models and model hub. Smooth upgrading to newer language models. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 24
    XLM (Cross-lingual Language Model)

    XLM (Cross-lingual Language Model)

    PyTorch original implementation of Cross-lingual Language Model

    XLM (Cross-lingual Language Model) is a family of multilingual pretraining methods that align representations across languages to enable strong zero-shot transfer. It popularized objectives like Masked Language Modeling (MLM) across many languages and Translation Language Modeling (TLM) that jointly trains on parallel sentence pairs to tighten cross-lingual alignment.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 25
    UnsupervisedMT

    UnsupervisedMT

    Phrase-Based & Neural Unsupervised Machine Translation

    ...The project also provides scripts to fetch and preprocess monolingual data, learn BPE codes, and train cross-lingual embeddings that bootstrap unsupervised alignment between languages. Beyond the core EMNLP 2018 setup, the codebase exposes additional, optional capabilities such as multi-language training, language model pretraining with shared parameters, and adversarial training.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • 2
  • Next