Showing 20 open source projects for "neural algorithm"

View related business solutions
  • MongoDB Atlas runs apps anywhere Icon
    MongoDB Atlas runs apps anywhere

    Deploy in 115+ regions with the modern database for every enterprise.

    MongoDB Atlas gives you the freedom to build and run modern applications anywhere—across AWS, Azure, and Google Cloud. With global availability in over 115 regions, Atlas lets you deploy close to your users, meet compliance needs, and scale with confidence across any geography.
    Start Free
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • 1
    PyGAD

    PyGAD

    Source code of PyGAD, Python 3 library for building genetic algorithms

    PyGAD is an open-source easy-to-use Python 3 library for building the genetic algorithm and optimizing machine learning algorithms. It supports Keras and PyTorch. PyGAD supports optimizing both single-objective and multi-objective problems. PyGAD supports different types of crossover, mutation, and parent selection. PyGAD allows different types of problems to be optimized using the genetic algorithm by customizing the fitness function.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 2
    TorchQuantum

    TorchQuantum

    A PyTorch-based framework for Quantum Classical Simulation

    A PyTorch-based framework for Quantum Classical Simulation, Quantum Machine Learning, Quantum Neural Networks, Parameterized Quantum Circuits with support for easy deployments on real quantum computers. Researchers on quantum algorithm design, parameterized quantum circuit training, quantum optimal control, quantum machine learning, and quantum neural networks. Dynamic computation graph, automatic gradient computation, fast GPU support, batch model terrorized processing.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 3
    Imagen - Pytorch

    Imagen - Pytorch

    Implementation of Imagen, Google's Text-to-Image Neural Network

    Implementation of Imagen, Google's Text-to-Image Neural Network that beats DALL-E2, in Pytorch. It is the new SOTA for text-to-image synthesis. Architecturally, it is actually much simpler than DALL-E2. It consists of a cascading DDPM conditioned on text embeddings from a large pre-trained T5 model (attention network). It also contains dynamic clipping for improved classifier-free guidance, noise level conditioning, and a memory-efficient unit design. It appears neither CLIP nor prior...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 4
    Homemade Machine Learning

    Homemade Machine Learning

    Python examples of popular machine learning algorithms

    homemade-machine-learning is a repository by Oleksii Trekhleb containing Python implementations of classic machine-learning algorithms done “from scratch”, meaning you don’t rely heavily on high-level libraries but instead write the logic yourself to deepen understanding. Each algorithm is accompanied by mathematical explanations, visualizations (often via Jupyter notebooks), and interactive demos so you can tweak parameters, data, and observe outcomes in real time. The purpose is pedagogical: you’ll see linear regression, logistic regression, k-means clustering, neural nets, decision trees, etc., built in Python using fundamentals like NumPy and Matplotlib, not hidden behind API calls. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Keep company data safe with Chrome Enterprise Icon
    Keep company data safe with Chrome Enterprise

    Protect your business with AI policies and data loss prevention in the browser

    Make AI work your way with Chrome Enterprise. Block unapproved sites and set custom data controls that align with your company's policies.
    Download Chrome
  • 5
    MiniSom

    MiniSom

    MiniSom is a minimalistic implementation of the Self Organizing Maps

    MiniSom is a minimalistic and Numpy-based implementation of the Self Organizing Maps (SOM). SOM is a type of Artificial Neural Network able to convert complex, nonlinear statistical relationships between high-dimensional data items into simple geometric relationships on a low-dimensional display. Minisom is designed to allow researchers to easily build on top of it and to give students the ability to quickly grasp its details. The project initially aimed for a minimalistic implementation of the Self-Organizing Map (SOM) algorithm, focusing on simplicity in features, dependencies, and code style. ...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 6
    MLJAR Studio

    MLJAR Studio

    Python package for AutoML on Tabular Data with Feature Engineering

    We are working on new way for visual programming. We developed a desktop application called MLJAR Studio. It is a notebook-based development environment with interactive code recipes and a managed Python environment. All running locally on your machine. We are waiting for your feedback. The mljar-supervised is an Automated Machine Learning Python package that works with tabular data. It is designed to save time for a data scientist. It abstracts the common way to preprocess the data,...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 7
    AnnLite

    AnnLite

    A fast embedded library for approximate nearest neighbor search

    ...A simple API is designed to be used with Python. It is easy to use and intuitive to set up to production. The library uses a highly optimized approximate nearest neighbor search algorithm (HNSW) to search for nearest neighbors. The library allows you to search for nearest neighbors within a subset of the dataset. Smooth integration with neural search ecosystem including Jina and DocArray, so that users can easily expose search API with gRPC and/or HTTP. The library is easy to install and use. It is designed to be used with Python. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 8
    Auto-PyTorch

    Auto-PyTorch

    Automatic architecture search and hyperparameter optimization

    While early AutoML frameworks focused on optimizing traditional ML pipelines and their hyperparameters, another trend in AutoML is to focus on neural architecture search. To bring the best of these two worlds together, we developed Auto-PyTorch, which jointly and robustly optimizes the network architecture and the training hyperparameters to enable fully automated deep learning (AutoDL). Auto-PyTorch is mainly developed to support tabular data (classification, regression) and time series...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 9
    Consistent Depth

    Consistent Depth

    We estimate dense, flicker-free, geometrically consistent depth

    Consistent Depth is a research project developed by Facebook Research that presents an algorithm for reconstructing dense and geometrically consistent depth information for all pixels in a monocular video. The system builds upon traditional structure-from-motion (SfM) techniques to provide geometric constraints while integrating a convolutional neural network trained for single-image depth estimation. During inference, the model fine-tunes itself to align with the geometric constraints of a specific input video, ensuring stable and realistic depth maps even in less-constrained regions. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Total Network Visibility for Network Engineers and IT Managers Icon
    Total Network Visibility for Network Engineers and IT Managers

    Network monitoring and troubleshooting is hard. TotalView makes it easy.

    This means every device on your network, and every interface on every device is automatically analyzed for performance, errors, QoS, and configuration.
    Learn More
  • 10
    Forecasting Best Practices

    Forecasting Best Practices

    Time Series Forecasting Best Practices & Examples

    Time series forecasting is one of the most important topics in data science. Almost every business needs to predict the future in order to make better decisions and allocate resources more effectively. This repository provides examples and best practice guidelines for building forecasting solutions. The goal of this repository is to build a comprehensive set of tools and examples that leverage recent advances in forecasting algorithms to build solutions and operationalize them. Rather than...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 11
    deep-q-learning

    deep-q-learning

    Minimal Deep Q Learning (DQN & DDQN) implementations in Keras

    The deep-q-learning repository authored by keon provides a Python-based implementation of the Deep Q-Learning algorithm — a cornerstone method in reinforcement learning. It implements the core logic needed to train an agent using Q-learning with neural networks (i.e. approximating Q-values via deep nets), setting up environment interaction loops, experience replay, network updates, and policy behavior. For learners and researchers interested in reinforcement learning, this repo offers a concrete, runnable example bridging theory and practice: you can execute the code, play with hyperparameters, observe convergence behavior, and see how deep Q-learning learns policies over time in standard environments. ...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 12
    CCZero (中国象棋Zero)

    CCZero (中国象棋Zero)

    Implement AlphaZero/AlphaGo Zero methods on Chinese chess

    ChineseChess-AlphaZero is a project that implements the AlphaZero algorithm for the game of Chinese Chess (Xiangqi). It adapts DeepMind’s AlphaZero method—combining neural networks and Monte Carlo Tree Search (MCTS)—to learn and play Chinese Chess without prior human data. The system includes self-play, training, and evaluation pipelines tailored to Xiangqi's unique game mechanics.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 13
    Active Learning

    Active Learning

    Framework and examples for active learning with machine learning model

    ...It includes several established active learning strategies such as uncertainty sampling, k-center greedy selection, and bandit-based methods, while also allowing for custom algorithm implementations. The framework integrates with both classical machine learning models (SVM, logistic regression) and neural networks.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 14
    Seq2seq Chatbot for Keras

    Seq2seq Chatbot for Keras

    This repository contains a new generative model of chatbot

    This repository contains a new generative model of chatbot based on seq2seq modeling. The trained model available here used a small dataset composed of ~8K pairs of context (the last two utterances of the dialogue up to the current point) and respective response. The data were collected from dialogues of English courses online. This trained model can be fine-tuned using a closed-domain dataset to real-world applications. The canonical seq2seq model became popular in neural machine...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 15
    Neural Libs

    Neural Libs

    Neural network library for developers

    This project includes the implementation of a neural network MLP, RBF, SOM and Hopfield networks in several popular programming languages. The project also includes examples of the use of neural networks as function approximation and time series prediction. Includes a special program makes it easy to test neural network based on training data and the optimization of the network.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 16

    LWPR

    Locally Weighted Projection Regression (LWPR)

    Locally Weighted Projection Regression (LWPR) is a fully incremental, online algorithm for non-linear function approximation in high dimensional spaces, capable of handling redundant and irrelevant input dimensions. At its core, it uses locally linear models, spanned by a small number of univariate regressions in selected directions in input space. A locally weighted variant of Partial Least Squares (PLS) is employed for doing the dimensionality reduction.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 17
    This project provides a set of Python tools for creating various kinds of neural networks, which can also be powered by genetic algorithms using grammatical evolution. MLP, backpropagation, recurrent, sparse, and skip-layer networks are supported.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 18
    Stanford Machine Learning Course

    Stanford Machine Learning Course

    machine learning course programming exercise

    ...It includes implementations of a variety of fundamental algorithms using Python and MATLAB/Octave. The repository covers a broad set of topics such as linear regression, logistic regression, neural networks, clustering, support vector machines, and recommender systems. Each folder corresponds to a specific algorithm or concept, making it easy for learners to navigate and practice. The exercises serve as practical, hands-on reinforcement of theoretical concepts taught in the course. This collection is valuable for students and practitioners who want to strengthen their skills in machine learning through coding exercises.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 19
    A character recognition software using a Back Propagation Algorithm for a 2-layered Feed Forward Non-Linear Neural Network. Written in Python, Graphics done using Pygame.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 20
    a distributed engine for abstract neural network development via natural-language programming
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • Next