Search Results for "model train design" - Page 9

Showing 286 open source projects for "model train design"

View related business solutions
  • Find Hidden Risks in Windows Task Scheduler Icon
    Find Hidden Risks in Windows Task Scheduler

    Free diagnostic script reveals configuration issues, error patterns, and security risks. Instant HTML report.

    Windows Task Scheduler might be hiding critical failures. Download the free JAMS diagnostic tool to uncover problems before they impact production—get a color-coded risk report with clear remediation steps in minutes.
    Download Free Tool
  • Atera all-in-one platform IT management software with AI agents Icon
    Atera all-in-one platform IT management software with AI agents

    Ideal for internal IT departments or managed service providers (MSPs)

    Atera’s AI agents don’t just assist, they act. From detection to resolution, they handle incidents and requests instantly, taking your IT management from automated to autonomous.
    Learn More
  • 1
    The CEDAR project
    ...Currently released components are: - eda-model: XML schema and schematron that define the storage of a valid design. - eda-model-interface: python3 library for loading, editing, diffing and validating an instance of an EDA design. - edator: The editor/IDE of EDA designs, using Qt/PySide2. - code generator: generate a C++ code base from a CEDAR model. - runtime: C++ and python runtime support files - ruststore: A datastore for the CEDAR runtime
    Downloads: 0 This Week
    Last Update:
    See Project
  • 2
    igel

    igel

    Machine learning tool that allows you to train and test models

    A delightful machine learning tool that allows you to train/fit, test, and use models without writing code. The goal of the project is to provide machine learning for everyone, both technical and non-technical users. I sometimes needed a tool sometimes, which I could use to fast create a machine learning prototype. Whether to build some proof of concept, create a fast draft model to prove a point or use auto ML.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 3
    MaskFormer

    MaskFormer

    Per-Pixel Classification is Not All You Need for Semantic Segmentation

    ...Built on top of Detectron2, it supports a wide range of datasets including ADE20K, Cityscapes, COCO-Stuff, and Mapillary Vistas, and provides pretrained baselines for each. The model achieves strong performance and scalability while simplifying training and evaluation workflows. Its successor, Mask2Former, extends the same meta-architecture to achieve state-of-the-art results across all major segmentation benchmarks. MaskFormer’s modular design, dataset integration, and compatibility with existing Detectron2 models make it an essential research tool.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 4
    Spleeter

    Spleeter

    Deezer source separation library including pretrained models

    Spleeter is the Deezer source separation library with pretrained models written in Python and using Tensorflow. It makes it easy to train music source separation models (assuming you have a dataset of isolated sources), and provides already trained state of the art models for performing various flavours of separation. 2 stems and 4 stems models have state of the art performances on the musdb dataset. Spleeter is also very fast as it can perform separation of audio files to 4 stems 100x...
    Downloads: 97 This Week
    Last Update:
    See Project
  • Retool your internal operations Icon
    Retool your internal operations

    Generate secure, production-grade apps that connect to your business data. Not just prototypes, but tools your team can actually deploy.

    Build internal software that meets enterprise security standards without waiting on engineering resources. Retool connects to your databases, APIs, and data sources while maintaining the permissions and controls you need. Create custom dashboards, admin tools, and workflows from natural language prompts—all deployed in your cloud with security baked in. Stop duct-taping operations together, start building in Retool.
    Build an app in Retool
  • 5
    GPT Neo

    GPT Neo

    An implementation of model parallel GPT-2 and GPT-3-style models

    An implementation of model & data parallel GPT3-like models using the mesh-tensorflow library. If you're just here to play with our pre-trained models, we strongly recommend you try out the HuggingFace Transformer integration. Training and inference is officially supported on TPU and should work on GPU as well. This repository will be (mostly) archived as we move focus to our GPU-specific repo, GPT-NeoX. NB, while neo can technically run a training step at 200B+ parameters, it is very...
    Downloads: 5 This Week
    Last Update:
    See Project
  • 6
    TorchGAN

    TorchGAN

    Research Framework for easy and efficient training of GANs

    The torchgan package consists of various generative adversarial networks and utilities that have been found useful in training them. This package provides an easy-to-use API which can be used to train popular GANs as well as develop newer variants. The core idea behind this project is to facilitate easy and rapid generative adversarial model research. TorchGAN is a Pytorch-based framework for designing and developing Generative Adversarial Networks. This framework has been designed to provide building blocks for popular GANs and also to allow customization for cutting-edge research. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 7
    Argos Translate

    Argos Translate

    Open-source offline translation library written in Python

    Argos Translate uses OpenNMT for translations and can be used as either a Python library, command-line, or GUI application. Argos Translate supports installing language model packages which are zip archives with a ".argosmodel" extension containing the data needed for translation. LibreTranslate is an API and web-app built on top of Argos Translate. Argos Translate also manages automatically pivoting through intermediate languages to translate between languages that don't have a direct...
    Downloads: 147 This Week
    Last Update:
    See Project
  • 8
    Kashgari

    Kashgari

    Kashgari is a production-level NLP Transfer learning framework

    Kashgari is a simple and powerful NLP Transfer learning framework, build a state-of-art model in 5 minutes for named entity recognition (NER), part-of-speech tagging (PoS), and text classification tasks.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 9
    EduData

    EduData

    Datasets in Education and convenient interface for dataset

    ...The "mature" data is in json sequence format and can be modeled by XKT and TKT(TBA) The analysis dataset tool only supports the json sequence format. To check the following statical indexes of the dataset. In order to better verify the effectiveness of the model, the dataset is usually divided into train/valid/test or using kfold method. Each item in the sequence represents one interaction. The first element of the item is the exercise id (in some works, the exercise id is not one-to-one mapped to one knowledge unit(ku)/concept, but in junyi, one exercise contains one ku) and the second one indicates whether the learner correctly answers the exercise, 0 for wrongly while 1 for correctly.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Desktop and Mobile Device Management Software Icon
    Desktop and Mobile Device Management Software

    It's a modern take on desktop management that can be scaled as per organizational needs.

    Desktop Central is a unified endpoint management (UEM) solution that helps in managing servers, laptops, desktops, smartphones, and tablets from a central location.
    Learn More
  • 10
    ReinventCommunity

    ReinventCommunity

    Jupyter Notebook tutorials for REINVENT 3.2

    This repository is a collection of useful jupyter notebooks, code snippets and example JSON files illustrating the use of Reinvent 3.2.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 11
    TRFL

    TRFL

    TensorFlow Reinforcement Learning

    TRFL, developed by Google DeepMind, is a TensorFlow-based library that provides a collection of essential building blocks for reinforcement learning (RL) algorithms. Pronounced “truffle,” it simplifies the implementation of RL agents by offering reusable components such as loss functions, value estimation tools, and temporal difference (TD) learning operators. The library is designed to integrate seamlessly with TensorFlow, allowing users to define differentiable RL objectives and train...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 12
    Transformer TTS

    Transformer TTS

    Implementation of a Transformer based neural network

    ...The system separates alignment learning and acoustic modeling: an autoregressive Transformer is used as an aligner to extract phoneme-to-frame durations, while a non-autoregressive “ForwardTransformer” generates mel-spectrograms conditioned on text and durations. This design addresses common autoregressive issues such as repetition, skipped words, and unstable attention, and results in robust, fast synthesis where all frames are predicted in parallel. The repository ships with tooling to build datasets (especially LJSpeech) and create training data, plus scripts to train both the aligner and the TTS model, monitor training with TensorBoard, and resume or reset training runs.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 13
    Old Photo Restoration

    Old Photo Restoration

    Bringing Old Photo Back to Life (CVPR 2020 oral)

    ...Unlike conventional restoration tasks that can be solved through supervised learning, the degradation in real photos is complex and the domain gap between synthetic images and real old photos makes the network fail to generalize. Therefore, we propose a novel triplet domain translation network by leveraging real photos along with massive synthetic image pairs. Specifically, we train two variational autoencoders (VAEs) to respectively transform old photos and clean photos into two latent spaces. And the translation between these two latent spaces is learned with synthetic paired data. This translation generalizes well to real photos because the domain gap is closed in the compact latent space. Besides, to address multiple degradations mixed in one old photo, we design a global branch with a partial nonlocal block targeting to the structured defects, such as scratches and dust spots.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 14
    AliceMind

    AliceMind

    ALIbaba's Collection of Encoder-decoders from MinD

    This repository provides pre-trained encoder-decoder models and its related optimization techniques developed by Alibaba's MinD (Machine IntelligeNce of Damo) Lab. Pre-trained models for natural language understanding (NLU). We extend BERT to a new model, StructBERT, by incorporating language structures into pre-training. Specifically, we pre-train StructBERT with two auxiliary tasks to make the most of the sequential order of words and sentences, which leverage language structures at the word and sentence levels, respectively. Pre-trained models for natural language generation (NLG). ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 15
    VITS

    VITS

    Conditional Variational Autoencoder with Adversarial Learning

    VITS is a foundational research implementation of “VITS: Conditional Variational Autoencoder with Adversarial Learning for End-to-End Text-to-Speech,” a well-known neural TTS architecture. Unlike traditional two-stage systems that separately train an acoustic model and a vocoder, VITS trains an end-to-end model that maps text directly to waveform using a conditional variational autoencoder combined with normalizing flows and adversarial training. This architecture enables parallel generation (fast inference) while achieving speech quality that rivals or surpasses many two-stage systems. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 16
    FARM

    FARM

    Fast & easy transfer learning for NLP

    ...Modular design of language models and prediction heads. Switch between heads or combine them for multitask learning. Full Compatibility with HuggingFace Transformers' models and model hub. Smooth upgrading to newer language models. Integration of custom datasets via Processor class. Powerful experiment tracking & execution.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 17
    DrQA

    DrQA

    Reading Wikipedia to Answer Open-Domain Questions

    ...The retriever relies on classic IR features (like TF-IDF and n-gram statistics) to remain lightweight and scalable to millions of documents. The reader is a neural model trained on supervised QA data to estimate start and end positions within a paragraph, and it can be adapted to new domains through fine-tuning or distant supervision. The repository includes scripts to build the Wikipedia index, train the reader, and evaluate end-to-end performance. DrQA popularized a practical recipe for combining IR and neural reading, and it remains a strong baseline for open-domain QA research and production prototypes.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 18
    TimeSformer

    TimeSformer

    The official pytorch implementation of our paper

    ...TimeSformer was influential in showing that pure transformer architectures—without convolutional backbones—can perform strongly on video classification tasks. Its flexible attention design allows experimenting with different factoring (spatial-then-temporal, joint, etc.) to trade off compute, memory, and accuracy.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 19
    Text Gen

    Text Gen

    Almost state of art text generation library

    Almost state of art text generation library. Text gen is a python library that allow you build a custom text generation model with ease. Something sweet built with Tensorflow and Pytorch(coming soon). Load your data, your data must be in a text format. Download the example data from the example folder. Tune your model to know the best optimizer, activation method to use.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 20
    Semantic Segmentation in PyTorch

    Semantic Segmentation in PyTorch

    Semantic segmentation models, datasets & losses implemented in PyTorch

    Semantic segmentation models, datasets and losses implemented in PyTorch. PyTorch and Torchvision needs to be installed before running the scripts, together with PIL and opencv for data-preprocessing and tqdm for showing the training progress. PyTorch v1.1 is supported (using the new supported tensoboard); can work with earlier versions, but instead of using tensoboard, use tensoboardX. Poly learning rate, where the learning rate is scaled down linearly from the starting value down to zero...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 21
    MLOps Course

    MLOps Course

    Learn how to design, develop, deploy and iterate on ML apps

    ...The repository itself contains configuration, code examples, and links to accompanying lessons hosted on the Made With ML site, which provide detailed narrative explanations and diagrams. Instead of focusing only on model training, the course emphasizes best practices like modular code design, CI/CD, containerization, reproducibility, and responsible ML (including monitoring and feedback loops). This makes it particularly valuable for engineers transitioning from “notebooks and prototypes” to real systems that must be robust, maintainable, and observable in production.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 22
    Denoiser

    Denoiser

    Real Time Speech Enhancement in the Waveform Domain (Interspeech 2020)

    Denoiser is a real-time speech enhancement model operating directly on raw waveforms, designed to clean noisy audio while running efficiently on CPU. It uses a causal encoder-decoder architecture with skip connections, optimized with losses defined both in the time domain and frequency domain to better suppress noise while preserving speech. Unlike models that operate on spectrograms alone, this design enables lower latency and coherent waveform output.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 23
    Gluon CV Toolkit

    Gluon CV Toolkit

    Gluon CV Toolkit

    GluonCV provides implementations of state-of-the-art (SOTA) deep learning algorithms in computer vision. It aims to help engineers, researchers, and students quickly prototype products, validate new ideas and learn computer vision. It features training scripts that reproduce SOTA results reported in latest papers, a large set of pre-trained models, carefully designed APIs and easy-to-understand implementations and community support. From fundamental image classification, object detection,...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 24
    FixRes

    FixRes

    Reproduces results of "Fixing the train-test resolution discrepancy"

    FixRes is a lightweight yet powerful training methodology for convolutional neural networks (CNNs) that addresses the common train-test resolution discrepancy problem in image classification. Developed by Facebook Research, FixRes improves model generalization by adjusting training and evaluation procedures to better align input resolutions used during different phases. The approach is simple but highly effective, requiring no architectural modifications and working across diverse CNN backbones such as ResNet, ResNeXt, PNASNet, and EfficientNet. ...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 25
    NLP Architect

    NLP Architect

    A model library for exploring state-of-the-art deep learning

    ...NLP Architect is designed to be flexible for adding new models, neural network components, data handling methods, and for easy training and running models. NLP Architect is a model-oriented library designed to showcase novel and different neural network optimizations. The library contains NLP/NLU-related models per task, different neural network topologies (which are used in models), procedures for simplifying workflows in the library, pre-defined data processors and dataset loaders and misc utilities. The library is designed to be a tool for model development: data pre-processing, build model, train, validate, infer, save or load a model.
    Downloads: 0 This Week
    Last Update:
    See Project