Showing 226 open source projects for "python neural"

View related business solutions
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • Get Avast Free Antivirus | Your top-rated shield against malware and online scams Icon
    Get Avast Free Antivirus | Your top-rated shield against malware and online scams

    Boost your PC's defense against cyberthreats and web-based scams.

    Our antivirus software scans for security and performance issues and helps you to fix them instantly. It also protects you in real time by analyzing unknown files before they reach your desktop PC or laptop — all for free.
    Free Download
  • 1
    Image-Editor

    Image-Editor

    AI based photo editing website for changing image background

    ...' with the name of your choice. Image-Editor uses Python's cv2 library, which provides an easy and efficient way to work with images and videos, including a wide range of image processing and computer vision algorithms. With cv2, you can easily read, write, filter, and display images, and much more. Image-Editor uses Mediapipe's selfie_segmentation model for background removal in real-time video streams. This advanced model uses deep neural networks to detect and remove the background.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 2
    DeepXDE

    DeepXDE

    A library for scientific machine learning & physics-informed learning

    DeepXDE is a library for scientific machine learning and physics-informed learning. DeepXDE includes the following algorithms. Physics-informed neural network (PINN). Solving different problems. Solving forward/inverse ordinary/partial differential equations (ODEs/PDEs) [SIAM Rev.] Solving forward/inverse integro-differential equations (IDEs) [SIAM Rev.] fPINN: solving forward/inverse fractional PDEs (fPDEs) [SIAM J. Sci. Comput.] NN-arbitrary polynomial chaos (NN-aPC): solving forward/inverse...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 3
    MiniSom

    MiniSom

    MiniSom is a minimalistic implementation of the Self Organizing Maps

    MiniSom is a minimalistic and Numpy-based implementation of the Self Organizing Maps (SOM). SOM is a type of Artificial Neural Network able to convert complex, nonlinear statistical relationships between high-dimensional data items into simple geometric relationships on a low-dimensional display. Minisom is designed to allow researchers to easily build on top of it and to give students the ability to quickly grasp its details. The project initially aimed for a minimalistic implementation...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 4
    SKORCH

    SKORCH

    A scikit-learn compatible neural network library that wraps PyTorch

    A scikit-learn compatible neural network library that wraps PyTorch.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Build Securely on Azure with Proven Frameworks Icon
    Build Securely on Azure with Proven Frameworks

    Lay a foundation for success with Tested Reference Architectures developed by Fortinet’s experts. Learn more in this white paper.

    Moving to the cloud brings new challenges. How can you manage a larger attack surface while ensuring great network performance? Turn to Fortinet’s Tested Reference Architectures, blueprints for designing and securing cloud environments built by cybersecurity experts. Learn more and explore use cases in this white paper.
    Download Now
  • 5
    PennyLane

    PennyLane

    A cross-platform Python library for differentiable programming

    A cross-platform Python library for differentiable programming of quantum computers. Train a quantum computer the same way as a neural network. Built-in automatic differentiation of quantum circuits, using the near-term quantum devices directly. You can combine multiple quantum devices with classical processing arbitrarily! Support for hybrid quantum and classical models, and compatible with existing machine learning libraries. Quantum circuits can be set up to interface with either NumPy...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 6
    NNCF

    NNCF

    Neural Network Compression Framework for enhanced OpenVINO

    NNCF (Neural Network Compression Framework) is an optimization toolkit for deep learning models, designed to apply quantization, pruning, and other techniques to improve inference efficiency.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 7
    OpenNMT-tf

    OpenNMT-tf

    Neural machine translation and sequence learning using TensorFlow

    OpenNMT is an open-source ecosystem for neural machine translation and neural sequence learning. OpenNMT-tf is a general-purpose sequence learning toolkit using TensorFlow 2. While neural machine translation is the main target task, it has been designed to more generally support sequence-to-sequence mapping, sequence tagging, sequence classification, language modeling. Models are described with code to allow training custom architectures and overriding default behavior. For example...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 8
    Albumentations

    Albumentations

    Fast image augmentation library and an easy-to-use wrapper

    Albumentations is a computer vision tool that boosts the performance of deep convolutional neural networks. Albumentations is a Python library for fast and flexible image augmentations. Albumentations efficiently implements a rich variety of image transform operations that are optimized for performance, and does so while providing a concise, yet powerful image augmentation interface for different computer vision tasks, including object classification, segmentation, and detection. Albumentations...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 9
    AI Upscaler for Blender

    AI Upscaler for Blender

    AI Upscaler for Blender using Real-ESRGAN

    ... on the CPU. Blender renders a low-resolution image. The Real-ESRGAN Upscaler upscales the low-resolution image to a higher-resolution image. Real-ESRGAN is a deep learning upscaler that uses neural networks to achieve excellent results by adding in detail when it upscales.
    Downloads: 2 This Week
    Last Update:
    See Project
  • MongoDB 8.0 on Atlas | Run anywhere Icon
    MongoDB 8.0 on Atlas | Run anywhere

    Now available in even more cloud regions across AWS, Azure, and Google Cloud.

    MongoDB 8.0 brings enhanced performance and flexibility to Atlas—with expanded availability across 125+ regions globally. Build modern apps anywhere your users are, with the power of a modern database behind you.
    Learn More
  • 10
    finetuner

    finetuner

    Task-oriented finetuning for better embeddings on neural search

    Fine-tuning is an effective way to improve performance on neural search tasks. However, setting up and performing fine-tuning can be very time-consuming and resource-intensive. Jina AI’s Finetuner makes fine-tuning easier and faster by streamlining the workflow and handling all the complexity and infrastructure in the cloud. With Finetuner, you can easily enhance the performance of pre-trained models, making them production-ready without extensive labeling or expensive hardware. Create high...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 11
    Segmentation Models

    Segmentation Models

    Segmentation models with pretrained backbones. PyTorch

    Segmentation models with pre trained backbones. High-level API (just two lines to create a neural network) 9 models architectures for binary and multi class segmentation (including legendary Unet) 124 available encoders (and 500+ encoders from timm) All encoders have pre-trained weights for faster and better convergence. Popular metrics and losses for training routines. All encoders have pretrained weights. Preparing your data the same way as during weights pre-training may give you better...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 12
    Haiku

    Haiku

    JAX-based neural network library

    Haiku is a library built on top of JAX designed to provide simple, composable abstractions for machine learning research. Haiku is a simple neural network library for JAX that enables users to use familiar object-oriented programming models while allowing full access to JAX’s pure function transformations. Haiku is designed to make the common things we do such as managing model parameters and other model state simpler and similar in spirit to the Sonnet library that has been widely used across...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 13
    EvoTorch

    EvoTorch

    Advanced evolutionary computation library built on top of PyTorch

    EvoTorch is an evolutionary optimization framework built on top of PyTorch, developed by NNAISENSE. It is designed for large-scale optimization problems, particularly those that require evolutionary algorithms rather than gradient-based methods.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 14
    CLIP-as-service

    CLIP-as-service

    Embed images and sentences into fixed-length vectors

    CLIP-as-service is a low-latency high-scalability service for embedding images and text. It can be easily integrated as a microservice into neural search solutions. Serve CLIP models with TensorRT, ONNX runtime and PyTorch w/o JIT with 800QPS[*]. Non-blocking duplex streaming on requests and responses, designed for large data and long-running tasks. Horizontally scale up and down multiple CLIP models on single GPU, with automatic load balancing. Easy-to-use. No learning curve, minimalist design...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 15
    fastai

    fastai

    Deep learning library

    ... of many deep learning and data processing techniques in terms of decoupled abstractions. These abstractions can be expressed concisely and clearly by leveraging the dynamism of the underlying Python language and the flexibility of the PyTorch library. fastai is organized around two main design goals: to be approachable and rapidly productive, while also being deeply hackable and configurable. It is built on top of a hierarchy of lower-level APIs which provide composable building blocks.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 16
    AtomAI

    AtomAI

    Deep and Machine Learning for Microscopy

    AtomAI is a Pytorch-based package for deep and machine-learning analysis of microscopy data that doesn't require any advanced knowledge of Python or machine learning. The intended audience is domain scientists with a basic understanding of how to use NumPy and Matplotlib. It was developed by Maxim Ziatdinov at Oak Ridge National Lab. The purpose of the AtomAI is to provide an environment that bridges the instrument-specific libraries and general physical analysis by enabling the seamless...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 17
    tinygrad

    tinygrad

    Deep learning framework

    This may not be the best deep learning framework, but it is a deep learning framework. Due to its extreme simplicity, it aims to be the easiest framework to add new accelerators to, with support for both inference and training. If XLA is CISC, tinygrad is RISC.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 18
    UForm

    UForm

    Multi-Modal Neural Networks for Semantic Search, based on Mid-Fusion

    UForm is a Multi-Modal Modal Inference package, designed to encode Multi-Lingual Texts, Images, and, soon, Audio, Video, and Documents, into a shared vector space! It comes with a set of homonymous pre-trained networks available on HuggingFace portal and extends the transfromers package to support Mid-fusion Models. Late-fusion models encode each modality independently, but into one shared vector space. Due to independent encoding late-fusion models are good at capturing coarse-grained...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 19
    EduCDM

    EduCDM

    The Model Zoo of cognitive diagnosis models

    The Model Zoo of Cognitive Diagnosis Models, including classic Item Response Ranking (IRT), Multidimensional Item Response Ranking (MIRT), Deterministic Input, Noisy "And" model(DINA), and advanced Fuzzy Cognitive Diagnosis Framework (FuzzyCDF), Neural Cognitive Diagnosis Model (NCDM), Item Response Ranking framework (IRR), Incremental Cognitive Diagnosis (ICD) and Knowledge-association baesd extension of NeuralCD (KaNCD). Cognitive diagnosis model (CDM) for intelligent educational systems...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 20
    PyG

    PyG

    Graph Neural Network Library for PyTorch

    PyG (PyTorch Geometric) is a library built upon PyTorch to easily write and train Graph Neural Networks (GNNs) for a wide range of applications related to structured data. It consists of various methods for deep learning on graphs and other irregular structures, also known as geometric deep learning, from a variety of published papers. In addition, it consists of easy-to-use mini-batch loaders for operating on many small and single giant graphs, multi GPU-support, DataPipe support, distributed...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 21
    AmpliGraph

    AmpliGraph

    Python library for Representation Learning on Knowledge Graphs

    Open source library based on TensorFlow that predicts links between concepts in a knowledge graph. AmpliGraph is a suite of neural machine learning models for relational Learning, a branch of machine learning that deals with supervised learning on knowledge graphs.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 22
    PyTorch Geometric Temporal

    PyTorch Geometric Temporal

    Spatiotemporal Signal Processing with Neural Machine Learning Models

    ... management domains. Finally, you can also create your own datasets. The package interfaces well with Pytorch Lightning which allows training on CPUs, single and multiple GPUs out-of-the-box. PyTorch Geometric Temporal makes implementing Dynamic and Temporal Graph Neural Networks quite easy - see the accompanying tutorial. Head over to our documentation to find out more about installation, creation of datasets and a full list of implemented methods and available datasets.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 23
    Opacus

    Opacus

    Training PyTorch models with differential privacy

    Opacus is a library that enables training PyTorch models with differential privacy. It supports training with minimal code changes required on the client, has little impact on training performance, and allows the client to online track the privacy budget expended at any given moment. Vectorized per-sample gradient computation that is 10x faster than micro batching. Supports most types of PyTorch models and can be used with minimal modification to the original neural network. Open source...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 24
    Bootstrap Your Own Latent (BYOL)

    Bootstrap Your Own Latent (BYOL)

    Usable Implementation of "Bootstrap Your Own Latent" self-supervised

    Practical implementation of an astoundingly simple method for self-supervised learning that achieves a new state-of-the-art (surpassing SimCLR) without contrastive learning and having to designate negative pairs. This repository offers a module that one can easily wrap any image-based neural network (residual network, discriminator, policy network) to immediately start benefitting from unlabelled image data. There is now new evidence that batch normalization is key to making this technique work...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 25
    Darts

    Darts

    A python library for easy manipulation and forecasting of time series

    darts is a Python library for easy manipulation and forecasting of time series. It contains a variety of models, from classics such as ARIMA to deep neural networks. The models can all be used in the same way, using fit() and predict() functions, similar to scikit-learn. The library also makes it easy to backtest models, combine the predictions of several models, and take external data into account. Darts supports both univariate and multivariate time series and models. The ML-based models can...
    Downloads: 0 This Week
    Last Update:
    See Project
Want the latest updates on software, tech news, and AI?
Get latest updates about software, tech news, and AI from SourceForge directly in your inbox once a month.