Showing 333 open source projects for "objects"

View related business solutions
  • Cut Data Warehouse Costs up to 54% with BigQuery Icon
    Cut Data Warehouse Costs up to 54% with BigQuery

    Migrate from Snowflake, Databricks, or Redshift with free migration tools. Exabyte scale without the Exabyte price.

    BigQuery delivers up to 54% lower TCO than cloud alternatives. Migrate from legacy or competing warehouses using free BigQuery Migration Service with automated SQL translation. Get serverless scale with no infrastructure to manage, compressed storage, and flexible pricing—pay per query or commit for deeper discounts. New customers get $300 in free credit.
    Try BigQuery Free
  • Build AI Apps with Gemini 3 on Vertex AI Icon
    Build AI Apps with Gemini 3 on Vertex AI

    Access Google’s most capable multimodal models. Train, test, and deploy AI with 200+ foundation models on one platform.

    Vertex AI gives developers access to Gemini 3—Google’s most advanced reasoning and coding model—plus 200+ foundation models including Claude, Llama, and Gemma. Build generative AI apps with Vertex AI Studio, customize with fine-tuning, and deploy to production with enterprise-grade MLOps. New customers get $300 in free credits.
    Try Vertex AI Free
  • 1
    Flama

    Flama

    Fire up your models with the flame

    Flama is a python library which establishes a standard framework for development and deployment of APIs with special focus on machine learning (ML). The main aim of the framework is to make ridiculously simple the deployment of ML APIs, simplifying (when possible) the entire process to a single line of code. The library builds on Starlette, and provides an easy-to-learn philosophy to speed up the building of highly performant GraphQL, REST and ML APIs. Besides, it comprises an ideal solution...
    Downloads: 4 This Week
    Last Update:
    See Project
  • 2
    Thinc

    Thinc

    A refreshing functional take on deep learning

    Thinc is a lightweight deep learning library that offers an elegant, type-checked, functional-programming API for composing models, with support for layers defined in other frameworks such as PyTorch, TensorFlow and MXNet. You can use Thinc as an interface layer, a standalone toolkit or a flexible way to develop new models. Previous versions of Thinc have been running quietly in production in thousands of companies, via both spaCy and Prodigy. We wrote the new version to let users compose,...
    Downloads: 4 This Week
    Last Update:
    See Project
  • 3
    Qwen-VL

    Qwen-VL

    Chat & pretrained large vision language model

    ...Qwen-VL supports multilingual inputs and conversation (e.g. Chinese, English), and is aimed at tasks like image captioning, question answering on images (VQA, DocVQA), grounding (detecting objects or regions from textual queries), etc.
    Downloads: 5 This Week
    Last Update:
    See Project
  • 4
    Shapash

    Shapash

    Explainability and Interpretability to Develop Reliable ML models

    Shapash is a Python library dedicated to the interpretability of Data Science models. It provides several types of visualization that display explicit labels that everyone can understand. Data Scientists can more easily understand their models, share their results and easily document their projects in an HTML report. End users can understand the suggestion proposed by a model using a summary of the most influential criteria.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Cut Cloud Costs with Google Compute Engine Icon
    Cut Cloud Costs with Google Compute Engine

    Save up to 91% with Spot VMs and get automatic sustained-use discounts. One free VM per month, plus $300 in credits.

    Save on compute costs with Compute Engine. Reduce your batch jobs and workload bill 60-91% with Spot VMs. Compute Engine's committed use offers customers up to 70% savings through sustained use discounts. Plus, you get one free e2-micro VM monthly and $300 credit to start.
    Try Compute Engine
  • 5
    Uplink

    Uplink

    A Declarative HTTP Client for Python

    A Declarative HTTP Client for Python. Inspired by Retrofit. Uplink is in beta development. The public API is still evolving, but we expect most changes to be backward compatible at this point. Uplink turns your HTTP API into a Python class. Build an instance to interact with the web service. Then, executing an HTTP request is as simply as invoking a method. Use decorators and type hints to describe each HTTP request. JSON, URL-encoded, and multipart request body and file upload. URL...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 6
    Mesh R-CNN

    Mesh R-CNN

    code for Mesh R-CNN, ICCV 2019

    ...Built on top of Detectron2 and PyTorch3D, Mesh R-CNN enables end-to-end 3D mesh prediction directly from single RGB images. The model learns to detect, segment, and reconstruct detailed 3D mesh representations of objects in natural images, bridging the gap between 2D perception and 3D understanding. Unlike voxel-based or point-based approaches, Mesh R-CNN uses a differentiable mesh representation, allowing it to efficiently refine surface geometry while maintaining high spatial detail. The system combines 2D detection from Mask R-CNN with 3D reasoning modules that output full mesh reconstructions aligned with the input image. ...
    Downloads: 3 This Week
    Last Update:
    See Project
  • 7
    AWX

    AWX

    A web-based user interface built on top of Ansible

    ...To the extent possible, auto-detects API versions, available endpoints, and feature support across multiple versions of AWX. Potential uses include configuring and launching jobs/playbooks, checking on the status and output of job runs, and managing objects like organizations, users, teams, etc.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 8
    Wan Move

    Wan Move

    Motion-controllable Video Generation via Latent Trajectory Guidance

    Wan Move is an open-source research codebase for motion-controllable video generation that focuses on enabling fine-grained control of motion within generative video models. It is designed to guide the temporal evolution of visual content by leveraging latent trajectory guidance, allowing users to manipulate how objects move over time without modifying the underlying generative architecture. By representing motion information as dense point trajectories and integrating them into the latent space of an image-to-video model, the project produces videos with more precise and controllable motion behavior than many existing methods. Wan-Move is particularly notable for eliminating the need for additional motion encoders, instead directly infusing motion cues into spatiotemporal features, which simplifies both training and inference.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 9
    Minigrid

    Minigrid

    Simple and easily configurable grid world environments

    ...It provides a suite of simple 2D grid-based tasks (e.g., navigating mazes, unlocking doors, carrying keys) where an agent moves in discrete steps and interacts with objects. The design emphasizes speed (agents can run thousands of steps per second), low dependency overhead, and high customizability — making it easy to define new maps, new tasks, or wrappers. It supports the Gymnasium-style environment API so that RL researchers can plug it into their existing frameworks and algorithms with minimal adaptation. ...
    Downloads: 1 This Week
    Last Update:
    See Project
  • Deploy Apps in Seconds with Cloud Run Icon
    Deploy Apps in Seconds with Cloud Run

    Host and run your applications without the need to manage infrastructure. Scales up from and down to zero automatically.

    Cloud Run is the fastest way to deploy containerized apps. Push your code in Go, Python, Node.js, Java, or any language and Cloud Run builds and deploys it automatically. Get fast autoscaling, pay only when your code runs, and skip the infrastructure headaches. Two million requests free per month. And new customers get $300 in free credit.
    Try Cloud Run Free
  • 10
    CutLER

    CutLER

    Code release for Cut and Learn for Unsupervised Object Detection

    CutLER is an approach for unsupervised object detection and instance segmentation that trains detectors without human-annotated labels, and the repo also includes VideoCutLER for unsupervised video instance segmentation. The method follows a “Cut-and-LEaRn” recipe: bootstrap object proposals, refine them iteratively, and train detection/segmentation heads to discover objects across diverse datasets. The codebase provides training and inference scripts, model configs, and references to benchmarking results that report large gains over prior unsupervised baselines. It’s intended for researchers exploring self-supervised and unsupervised recognition, offering a practical path to scale beyond costly labeled corpora. ...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 11
    VGGSfM

    VGGSfM

    VGGSfM: Visual Geometry Grounded Deep Structure From Motion

    ...It leverages tools like PyCOLMAP, poselib, LightGlue, and PyTorch3D for feature matching, pose estimation, and visualization. With minimal configuration, users can process single scenes or full video sequences, apply motion masks to exclude moving objects, and train neural radiance or splatting models directly from reconstructed outputs.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 12
    Pandas Profiling

    Pandas Profiling

    Create HTML profiling reports from pandas DataFrame objects

    pandas-profiling generates profile reports from a pandas DataFrame. The pandas df.describe() function is handy yet a little basic for exploratory data analysis. pandas-profiling extends pandas DataFrame with df.profile_report(), which automatically generates a standardized univariate and multivariate report for data understanding. High correlation warnings, based on different correlation metrics (Spearman, Pearson, Kendall, Cramér’s V, Phik). Most common categories (uppercase, lowercase,...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 13

    Python Fire

    Automatically generate CLIs from absolutely any Python object

    ...It’s a really simple and easy way to create CLI in Python, and can also enable you to explore existing code or turn other people’s code into a CLI. Python Fire lets you call Fire on any Python object: be it functions, classes, objects, modules, lists-- you name it! It will help you develop as well as debug Python code, and make transitioning between Bash and Python a whole lot easier.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 14
    EdgeDB

    EdgeDB

    A next-generation graph-relational database

    ...It aims to solve some hard design problems that make existing databases unnecessarily onerous to use. Powered by the Postgres query engine under the hood, EdgeDB thinks about schema the same way you do: as objects with properties connected by links. It's like a relational database with an object-oriented data model, or a graph database with strict schema. We call it a graph-relational database. The core unit of schema in the graph-relational model is the object type, analogous to a table in SQL. Object types contain properties and can be linked to other object types to form a schema graph.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 15
    Haiku Sonnet for JAX

    Haiku Sonnet for JAX

    JAX-based neural network library

    ...Haiku is a simple neural network library for JAX that enables users to use familiar object-oriented programming models while allowing full access to JAX's pure function transformations. Haiku provides two core tools: a module abstraction, hk.Module, and a simple function transformation, hk.transform. hk.Modules are Python objects that hold references to their own parameters, other modules, and methods that apply functions on user inputs. hk.transform turns functions that use these object-oriented, functionally "impure" modules into pure functions that can be used with jax.jit, jax.grad, jax.pmap, etc.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 16
    simplejson

    simplejson

    simplejson is a simple, fast, extensible JSON encoder/decoder

    ...This version is tested with the latest Python 3.8 and maintains backward compatibility with Python 3.3+ and the legacy Python 2.5 - Python 2.7 releases. The encoder can be specialized to provide serialization in any kind of situation, without any special support by the objects to be serialized (somewhat like pickle). This is best done with the default kwarg to dumps.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 17
    ydata-profiling

    ydata-profiling

    Create HTML profiling reports from pandas DataFrame objects

    ydata-profiling primary goal is to provide a one-line Exploratory Data Analysis (EDA) experience in a consistent and fast solution. Like pandas df.describe() function, that is so handy, ydata-profiling delivers an extended analysis of a DataFrame while allowing the data analysis to be exported in different formats such as html and json.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 18
    Qwen-2.5-VL

    Qwen-2.5-VL

    Qwen2.5-VL is the multimodal large language model series

    Qwen2.5 is a series of large language models developed by the Qwen team at Alibaba Cloud, designed to enhance natural language understanding and generation across multiple languages. The models are available in various sizes, including 0.5B, 1.5B, 3B, 7B, 14B, 32B, and 72B parameters, catering to diverse computational requirements. Trained on a comprehensive dataset of up to 18 trillion tokens, Qwen2.5 models exhibit significant improvements in instruction following, long-text generation...
    Downloads: 4 This Week
    Last Update:
    See Project
  • 19
    Qwen-Image-Layered

    Qwen-Image-Layered

    Qwen-Image-Layered: Layered Decomposition for Inherent Editablity

    Qwen-Image-Layered is an extension of the Qwen series of multimodal models that introduces layered image understanding, enabling the model to reason about hierarchical visual structures — such as separating foreground, background, objects, and contextual layers within an image. This architecture allows richer semantic interpretation, enabling use cases such as scene decomposition, object-level editing, layered captioning, and more fine-grained multimodal reasoning than with flat image encodings alone. By combining text and structured image representations, it aims to facilitate tasks where both descriptive and structural understanding are important, such as detailed image QA, interactive image editing via prompt layers, and image-conditioned generation with structural control. ...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 20
    Superduper

    Superduper

    Superduper: Integrate AI models and machine learning workflows

    ...It supports the latest technologies and techniques, including LLMs, vector-search, RAG, and multimodality as well as classical AI and ML paradigms. Developers may leverage Superduper by building compositional and declarative objects that out-source the details of deployment, orchestration versioning, and more to the Superduper engine. This allows developers to completely avoid implementing MLOps, ETL pipelines, model deployment, data migration, and synchronization. Using Superduper is simply "CAPE": Connect to your data, apply arbitrary AI to that data, package and reuse the application on arbitrary data, and execute AI-database queries and predictions on the resulting AI outputs and data.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 21
    orjson

    orjson

    Fast, correct Python JSON library supporting dataclasses, datetimes

    orjson is a fast, correct JSON library for Python. It benchmarks as the fastest Python library for JSON and is more correct than the standard json library or other third-party libraries. It serializes dataclass, datetime, numpy, and UUID instances natively. orjson supports CPython 3.8, 3.9, 3.10, 3.11, and 3.12. It distributes amd64/x86_64, aarch64/armv8, arm7, POWER/ppc64le, and s390x wheels for Linux, amd64 and aarch64 wheels for macOS, and amd64 and i686/x86 wheels for Windows. orjson...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 22
    Django Rules

    Django Rules

    Awesome Django authorization, without the database

    ...It can also be used as a standalone library in other contexts and frameworks. Versatile. Decorate callables to build complex graphs of predicates. Predicates can be any type of callable -- simple functions, lambdas, methods, callable class objects, partial functions, decorated functions, anything really. A good Django citizen. Seamless integration with Django views, templates and the Admin for testing for object-level permissions. Efficient and smart. No need to mess around with a database to figure out whether John really wrote that book. Simple. Dive in the code. You'll need 10 minutes to figure out how it works. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 23
    Graphene-Django

    Graphene-Django

    Integrate GraphQL into your Django project

    ...Graphene Django has a number of additional features that are designed to make working with Django easy. Our primary focus in this tutorial is to give a good understanding of how to connect models from Django ORM to Graphene object types. GraphQL presents your objects to the world as a graph structure rather than a more hierarchical structure to which you may be accustomed. In order to create this representation, Graphene needs to know about each type of object which will appear in the graph.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 24
    Unofficial TikTok API in Python

    Unofficial TikTok API in Python

    The Unofficial TikTok API Wrapper In Python

    ...On a video, this may look like this, although TikTok changes its structure from time to time so it's worth investigating the structure of the dictionary when you use this package. You'll probably need to use this beyond just for legacy support since not all attributes are parsed out and attached to the different objects.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 25
    Darts

    Darts

    A python library for easy manipulation and forecasting of time series

    darts is a Python library for easy manipulation and forecasting of time series. It contains a variety of models, from classics such as ARIMA to deep neural networks. The models can all be used in the same way, using fit() and predict() functions, similar to scikit-learn. The library also makes it easy to backtest models, combine the predictions of several models, and take external data into account. Darts supports both univariate and multivariate time series and models. The ML-based models...
    Downloads: 2 This Week
    Last Update:
    See Project
MongoDB Logo MongoDB
Gen AI apps are built with MongoDB Atlas
Atlas offers built-in vector search and global availability across 125+ regions. Start building AI apps faster, all in one place.
Try Free →