Showing 226 open source projects for "python neural"

View related business solutions
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • Your top-rated shield against malware and online scams | Avast Free Antivirus Icon
    Your top-rated shield against malware and online scams | Avast Free Antivirus

    Browse and email in peace, supported by clever AI

    Our antivirus software scans for security and performance issues and helps you to fix them instantly. It also protects you in real time by analyzing unknown files before they reach your desktop PC or laptop — all for free.
    Free Download
  • 1
    Stanza

    Stanza

    Stanford NLP Python library for many human languages

    Stanza is a collection of accurate and efficient tools for the linguistic analysis of many human languages. Starting from raw text to syntactic analysis and entity recognition, Stanza brings state-of-the-art NLP models to languages of your choosing. Stanza is a Python natural language analysis package. It contains tools, which can be used in a pipeline, to convert a string containing human language text into lists of sentences and words, to generate base forms of those words, their parts...
    Downloads: 3 This Week
    Last Update:
    See Project
  • 2
    Sonnet

    Sonnet

    TensorFlow-based neural network library

    Sonnet is a neural network library built on top of TensorFlow designed to provide simple, composable abstractions for machine learning research. Sonnet can be used to build neural networks for various purposes, including different types of learning. Sonnet’s programming model revolves around a single concept: modules. These modules can hold references to parameters, other modules and methods that apply some function on the user input. There are a number of predefined modules that already...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 3
    higgsfield

    higgsfield

    Fault-tolerant, highly scalable GPU orchestration

    Higgsfield is an open-source, fault-tolerant, highly scalable GPU orchestration, and a machine learning framework designed for training models with billions to trillions of parameters, such as Large Language Models (LLMs).
    Downloads: 7 This Week
    Last Update:
    See Project
  • 4
    DeepVariant

    DeepVariant

    DeepVariant is an analysis pipeline that uses a deep neural networks

    DeepVariant is an analysis pipeline that uses a deep neural network to call genetic variants from next-generation DNA sequencing data. DeepVariant is a deep learning-based variant caller that takes aligned reads (in BAM or CRAM format), produces pileup image tensors from them, classifies each tensor using a convolutional neural network, and finally reports the results in a standard VCF or gVCF file. DeepTrio is a deep learning-based trio variant caller built on top of DeepVariant. DeepTrio...
    Downloads: 4 This Week
    Last Update:
    See Project
  • Picsart Enterprise Background Removal API for Stunning eCommerce Visuals Icon
    Picsart Enterprise Background Removal API for Stunning eCommerce Visuals

    Instantly remove the background from your images in just one click.

    With our Remove Background API tool, you can access the transformative capabilities of automation , which will allow you to turn any photo asset into compelling product imagery. With elevated visuals quality on your digital platforms, you can captivate your audience, and therefore achieve higher engagement and sales.
    Learn More
  • 5
    PaddleNLP

    PaddleNLP

    Easy-to-use and powerful NLP library with Awesome model zoo

    PaddleNLP It is a natural language processing development library for flying paddles, with Easy-to-use text area API, Examples of applications for multiple scenarios, and High-performance distributed training Three major features, aimed at improving the modeling efficiency of the flying oar developer's text field, aiming to improve the developer's development efficiency in the text field, and provide rich examples of NLP applications. Provide rich industry-level pre-task capabilities...
    Downloads: 6 This Week
    Last Update:
    See Project
  • 6
    The SpeechBrain Toolkit

    The SpeechBrain Toolkit

    A PyTorch-based Speech Toolkit

    SpeechBrain is an open-source and all-in-one conversational AI toolkit. It is designed to be simple, extremely flexible, and user-friendly. Competitive or state-of-the-art performance is obtained in various domains. SpeechBrain supports state-of-the-art methods for end-to-end speech recognition, including models based on CTC, CTC+attention, transducers, transformers, and neural language models relying on recurrent neural networks and transformers. Speaker recognition is already deployed...
    Downloads: 6 This Week
    Last Update:
    See Project
  • 7
    TorchQuantum

    TorchQuantum

    A PyTorch-based framework for Quantum Classical Simulation

    A PyTorch-based framework for Quantum Classical Simulation, Quantum Machine Learning, Quantum Neural Networks, Parameterized Quantum Circuits with support for easy deployments on real quantum computers. Researchers on quantum algorithm design, parameterized quantum circuit training, quantum optimal control, quantum machine learning, and quantum neural networks. Dynamic computation graph, automatic gradient computation, fast GPU support, batch model terrorized processing.
    Downloads: 4 This Week
    Last Update:
    See Project
  • 8
    PySR

    PySR

    High-Performance Symbolic Regression in Python and Julia

    ... are described in the PySR paper. Symbolic regression works best on low-dimensional datasets, but one can also extend these approaches to higher-dimensional spaces by using "Symbolic Distillation" of Neural Networks, as explained in 2006.11287, where we apply it to N-body problems. Here, one essentially uses symbolic regression to convert a neural net to an analytic equation. Thus, these tools simultaneously present an explicit and powerful way to interpret deep neural networks.
    Downloads: 4 This Week
    Last Update:
    See Project
  • 9
    Hivemind

    Hivemind

    Decentralized deep learning in PyTorch. Built to train models

    ... averaging: iteratively aggregate updates from multiple workers without the need to synchronize across the entire network. Train neural networks of arbitrary size: parts of their layers are distributed across the participants with the Decentralized Mixture-of-Experts. If you have succesfully trained a model or created a downstream repository with the help of our library, feel free to submit a pull request that adds your project to the list.
    Downloads: 5 This Week
    Last Update:
    See Project
  • MongoDB 8.0 on Atlas | Run anywhere Icon
    MongoDB 8.0 on Atlas | Run anywhere

    Now available in even more cloud regions across AWS, Azure, and Google Cloud.

    MongoDB 8.0 brings enhanced performance and flexibility to Atlas—with expanded availability across 125+ regions globally. Build modern apps anywhere your users are, with the power of a modern database behind you.
    Learn More
  • 10
    txtai

    txtai

    Build AI-powered semantic search applications

    txtai executes machine-learning workflows to transform data and build AI-powered semantic search applications. Traditional search systems use keywords to find data. Semantic search applications have an understanding of natural language and identify results that have the same meaning, not necessarily the same keywords. Backed by state-of-the-art machine learning models, data is transformed into vector representations for search (also known as embeddings). Innovation is happening at a rapid...
    Downloads: 5 This Week
    Last Update:
    See Project
  • 11
    Audiogen Codec

    Audiogen Codec

    48khz stereo neural audio codec for general audio

    AGC (Audiogen Codec) is a convolutional autoencoder based on the DAC architecture, which holds SOTA. We found that training with EMA and adding a perceptual loss term with CLAP features improved performance. These codecs, being low compression, outperform Meta's EnCodec and DAC on general audio as validated from internal blind ELO games. We trained (relatively) very low compression codecs in the pursuit of solving a core issue regarding general music and audio generation, low acoustic...
    Downloads: 3 This Week
    Last Update:
    See Project
  • 12
    hloc

    hloc

    Visual localization made easy with hloc

    This is hloc, a modular toolbox for state-of-the-art 6-DoF visual localization. It implements Hierarchical Localization, leveraging image retrieval and feature matching, and is fast, accurate, and scalable. This codebase won the indoor/outdoor localization challenges at CVPR 2020 and ECCV 2020, in combination with SuperGlue, our graph neural network for feature matching. We provide step-by-step guides to localize with Aachen, InLoc, and to generate reference poses for your own data using SfM...
    Downloads: 6 This Week
    Last Update:
    See Project
  • 13
    StoryTeller

    StoryTeller

    Multimodal AI Story Teller, built with Stable Diffusion, GPT, etc.

    A multimodal AI story teller, built with Stable Diffusion, GPT, and neural text-to-speech (TTS). Given a prompt as an opening line of a story, GPT writes the rest of the plot; Stable Diffusion draws an image for each sentence; a TTS model narrates each line, resulting in a fully animated video of a short story, replete with audio and visuals. To develop locally, install dev dependencies and install pre-commit hooks. This will automatically trigger linting and code quality checks before each...
    Downloads: 5 This Week
    Last Update:
    See Project
  • 14
    refinery

    refinery

    Open-source choice to scale, assess and maintain natural language data

    ... of refinery currently work on integrations to other labeling tools, such that you can easily switch between different choices. refinery is a multi-repository project, you can find all integrated services in the architecture below. The app builds on top of Hugging Face and spaCy to leverage pre-built language models for your NLP tasks, as well as qdrant for neural search.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 15
    Lightweight' GAN

    Lightweight' GAN

    Implementation of 'lightweight' GAN, proposed in ICLR 2021

    ... they pass into a neural network (if you use augmentation). The general recommendation is to use suitable augs for your data and as many as possible, then after some time of training disable the most destructive (for image) augs. You can turn on automatic mixed precision with one flag --amp. You should expect it to be 33% faster and save up to 40% memory. Aim is an open-source experiment tracker that logs your training runs, and enables a beautiful UI to compare them.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 16
    PyTorch Forecasting

    PyTorch Forecasting

    Time series forecasting with PyTorch

    PyTorch Forecasting aims to ease state-of-the-art time series forecasting with neural networks for both real-world cases and research alike. The goal is to provide a high-level API with maximum flexibility for professionals and reasonable defaults for beginners. A time series dataset class that abstracts handling variable transformations, missing values, randomized subsampling, multiple history lengths, etc. A base model class that provides basic training of time series models along...
    Downloads: 3 This Week
    Last Update:
    See Project
  • 17
    SparseML

    SparseML

    Libraries for applying sparsification recipes to neural networks

    SparseML is an optimization toolkit for training and deploying deep learning models using sparsification techniques like pruning and quantization to improve efficiency.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 18
    Kornia

    Kornia

    Open Source Differentiable Computer Vision Library

    ... neural networks to train models to perform image transformations, epipolar geometry, depth estimation, and low-level image processing such as filtering and edge detection that operate directly on tensors. With Kornia we fill the gap between classical and deep computer vision that implements standard and advanced vision algorithms for AI. Our libraries and initiatives are always according to the community needs.
    Downloads: 5 This Week
    Last Update:
    See Project
  • 19
    Moshi

    Moshi

    A speech-text foundation model for real time dialogue

    Moshi is a speech-text foundation model and full-duplex spoken dialogue framework. It uses Mimi, a state-of-the-art streaming neural audio codec. Mimi processes 24 kHz audio, down to a 12.5 Hz representation with a bandwidth of 1.1 kbps, in a fully streaming manner (latency of 80ms, the frame size), yet performs better than existing, non-streaming, codecs like SpeechTokenizer (50 Hz, 4kbps), or SemantiCodec (50 Hz, 1.3kbps). Moshi models two streams of audio: one corresponds to Moshi...
    Downloads: 4 This Week
    Last Update:
    See Project
  • 20
    FLAML

    FLAML

    A fast library for AutoML and tuning

    FLAML is a lightweight Python library that finds accurate machine learning models automatically, efficiently and economically. It frees users from selecting learners and hyperparameters for each learner. For common machine learning tasks like classification and regression, it quickly finds quality models for user-provided data with low computational resources. It supports both classical machine learning models and deep neural networks. It is easy to customize or extend. Users can find...
    Downloads: 3 This Week
    Last Update:
    See Project
  • 21
    BindsNET

    BindsNET

    Simulation of spiking neural networks (SNNs) using PyTorch

    A Python package used for simulating spiking neural networks (SNNs) on CPUs or GPUs using PyTorch Tensor functionality. BindsNET is a spiking neural network simulation library geared towards the development of biologically inspired algorithms for machine learning. This package is used as part of ongoing research on applying SNNs to machine learning (ML) and reinforcement learning (RL) problems in the Biologically Inspired Neural & Dynamical Systems (BINDS) lab.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 22
    VectorDB

    VectorDB

    A Python vector database you just need, no more, no less

    vectordb is a Pythonic vector database offers a comprehensive suite of CRUD (Create, Read, Update, Delete) operations and robust scalability options, including sharding and replication. It's readily deployable in a variety of environments, from local to on-premise and cloud. vectordb delivers exactly what you need - no more, no less. It's a testament to effective Pythonic design without over-engineering, making it a lean yet powerful solution for all your needs. vectordb capitalizes on the...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 23
    PyTorch Implementation of SDE Solvers

    PyTorch Implementation of SDE Solvers

    Differentiable SDE solvers with GPU support and efficient sensitivity

    ... be loosely viewed as a variational autoencoder with its prior and approximate posterior being SDEs. The program outputs figures to the path specified by <TRAIN_DIR>. Training should stabilize after 500 iterations with the default hyperparameters. examples/sde_gan.py learns an SDE as a GAN, as in [2], [3]. The example trains an SDE as the generator of a GAN, whilst using a neural CDE [4] as the discriminator.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 24
    Ludwig AI

    Ludwig AI

    Low-code framework for building custom LLMs, neural networks

    Declarative deep learning framework built for scale and efficiency. Ludwig is a low-code framework for building custom AI models like LLMs and other deep neural networks. Declarative YAML configuration file is all you need to train a state-of-the-art LLM on your data. Support for multi-task and multi-modality learning. Comprehensive config validation detects invalid parameter combinations and prevents runtime failures. Automatic batch size selection, distributed training (DDP, DeepSpeed...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 25
    Image-Editor

    Image-Editor

    AI based photo editing website for changing image background

    ...' with the name of your choice. Image-Editor uses Python's cv2 library, which provides an easy and efficient way to work with images and videos, including a wide range of image processing and computer vision algorithms. With cv2, you can easily read, write, filter, and display images, and much more. Image-Editor uses Mediapipe's selfie_segmentation model for background removal in real-time video streams. This advanced model uses deep neural networks to detect and remove the background.
    Downloads: 2 This Week
    Last Update:
    See Project
Want the latest updates on software, tech news, and AI?
Get latest updates about software, tech news, and AI from SourceForge directly in your inbox once a month.