Search Results for "nvidia%20gpu%20mod" - Page 2

Showing 78 open source projects for "nvidia%20gpu%20mod"

View related business solutions
  • AI-generated apps that pass security review Icon
    AI-generated apps that pass security review

    Stop waiting on engineering. Build production-ready internal tools with AI—on your company data, in your cloud.

    Retool lets you generate dashboards, admin panels, and workflows directly on your data. Type something like “Build me a revenue dashboard on my Stripe data” and get a working app with security, permissions, and compliance built in from day one. Whether on our cloud or self-hosted, create the internal software your team needs without compromising enterprise standards or control.
    Try Retool free
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • 1
    InvokeAI

    InvokeAI

    InvokeAI is a leading creative engine for Stable Diffusion models

    ...InvokeAI offers an industry leading Web Interface, interactive Command Line Interface, and also serves as the foundation for multiple commercial products. This fork is supported across Linux, Windows and Macintosh. Linux users can use either an Nvidia-based card (with CUDA support) or an AMD card (using the ROCm driver). We do not recommend the GTX 1650 or 1660 series video cards. They are unable to run in half-precision mode and do not have sufficient VRAM to render 512x512 images.
    Downloads: 17 This Week
    Last Update:
    See Project
  • 2
    FastChat

    FastChat

    Open platform for training, serving, and evaluating language models

    ...This can reduce memory usage by around half with slightly degraded model quality. It is compatible with the CPU, GPU, and Metal backend. Vicuna-13B with 8-bit compression can run on a single NVIDIA 3090/4080/T4/V100(16GB) GPU. In addition to that, you can add --cpu-offloading to commands above to offload weights that don't fit on your GPU onto the CPU memory. This requires 8-bit compression to be enabled and the bitsandbytes package to be installed, which is only available on linux operating systems.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 3
    Triton Inference Server

    Triton Inference Server

    The Triton Inference Server provides an optimized cloud

    ...Triton enables teams to deploy any AI model from multiple deep learning and machine learning frameworks, including TensorRT, TensorFlow, PyTorch, ONNX, OpenVINO, Python, RAPIDS FIL, and more. Triton supports inference across cloud, data center, edge, and embedded devices on NVIDIA GPUs, x86 and ARM CPU, or AWS Inferentia. Triton delivers optimized performance for many query types, including real-time, batched, ensembles, and audio/video streaming. Provides Backend API that allows adding custom backends and pre/post-processing operations. Model pipelines using Ensembling or Business Logic Scripting (BLS). HTTP/REST and GRPC inference protocols based on the community-developed KServe protocol. ...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 4
    OuteTTS

    OuteTTS

    Interface for OuteTTS models

    ...The project supports multiple backends including llama.cpp (Python bindings and server), Hugging Face Transformers, ExLlamaV2, VLLM and a JavaScript interface via Transformers.js, allowing it to run on CPUs, NVIDIA CUDA GPUs, AMD ROCm, Vulkan-capable GPUs, and Apple Metal. It also includes a notion of speaker profiles: you can create a speaker from a short audio sample, save it as JSON, and reuse it for consistent voice identity across generations and sessions. For best quality, the model is designed to work with a reference speaker clip and will inherit emotion, style, and accent from that reference.
    Downloads: 1 This Week
    Last Update:
    See Project
  • Outgrown Windows Task Scheduler? Icon
    Outgrown Windows Task Scheduler?

    Free diagnostic identifies where your workflow is breaking down—with instant analysis of your scheduling environment.

    Windows Task Scheduler wasn't built for complex, cross-platform automation. Get a free diagnostic that shows exactly where things are failing and provides remediation recommendations. Interactive HTML report delivered in minutes.
    Download Free Tool
  • 5
    DeepPavlov

    DeepPavlov

    A library for deep learning end-to-end dialog systems and chatbots

    DeepPavlov makes it easy for beginners and experts to create dialogue systems. The best place to start is with user-friendly tutorials. They provide quick and convenient introduction on how to use DeepPavlov with complete, end-to-end examples. No installation needed. Guides explain the concepts and components of DeepPavlov. Follow step-by-step instructions to install, configure and extend DeepPavlov framework for your use case. DeepPavlov is an open-source framework for chatbots and virtual...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 6
    CogAgent

    CogAgent

    An open sourced end-to-end VLM-based GUI Agent

    ...The model is designed for agent-style execution rather than freeform chat, maintaining a continuous execution history across steps while requiring a fresh session for each new task. Inference supports BF16 on NVIDIA GPUs, with optional INT8 and INT4 modes available but with noted performance loss at INT4; example CLIs and a web demo illustrate bounding-box outputs and operation categories.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 7
    Simple StyleGan2 for Pytorch

    Simple StyleGan2 for Pytorch

    Simplest working implementation of Stylegan2

    Simple Pytorch implementation of Stylegan2 that can be completely trained from the command-line, no coding needed. You will need a machine with a GPU and CUDA installed. You can also specify the location where intermediate results and model checkpoints should be stored. You can increase the network capacity (which defaults to 16) to improve generation results, at the cost of more memory. By default, if the training gets cut off, it will automatically resume from the last checkpointed file....
    Downloads: 0 This Week
    Last Update:
    See Project
  • 8
    AWS Deep Learning Containers

    AWS Deep Learning Containers

    A set of Docker images for training and serving models in TensorFlow

    AWS Deep Learning Containers (DLCs) are a set of Docker images for training and serving models in TensorFlow, TensorFlow 2, PyTorch, and MXNet. Deep Learning Containers provide optimized environments with TensorFlow and MXNet, Nvidia CUDA (for GPU instances), and Intel MKL (for CPU instances) libraries and are available in the Amazon Elastic Container Registry (Amazon ECR). The AWS DLCs are used in Amazon SageMaker as the default vehicles for your SageMaker jobs such as training, inference, transforms etc. They've been tested for machine learning workloads on Amazon EC2, Amazon ECS and Amazon EKS services as well. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 9
    Style-Bert-VITS2

    Style-Bert-VITS2

    Style-Bert-VITS2: Bert-VITS2 with more controllable voice styles

    ...It includes a full GUI editor to script dialogue, set different styles per line, edit dictionaries, and save/load projects, plus a separate web UI and Colab notebooks for training and experimentation. For those who only need synthesis, the project is published as a Python library (pip install style-bert-vits2) and can run on CPU without an NVIDIA GPU, though training still requires GPU hardware.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Atera all-in-one platform IT management software with AI agents Icon
    Atera all-in-one platform IT management software with AI agents

    Ideal for internal IT departments or managed service providers (MSPs)

    Atera’s AI agents don’t just assist, they act. From detection to resolution, they handle incidents and requests instantly, taking your IT management from automated to autonomous.
    Learn More
  • 10
    BackgroundMattingV2

    BackgroundMattingV2

    Real-Time High-Resolution Background Matting

    Official repository for the paper Real-Time High-Resolution Background Matting. Our model requires capturing an additional background image and produces state-of-the-art matting results at 4K 30fps and HD 60fps on an Nvidia RTX 2080 TI GPU.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 11
    Transformers4Rec

    Transformers4Rec

    Transformers4Rec is a flexible and efficient library

    Transformers4Rec is an advanced recommendation system library that leverages Transformer models for sequential and session-based recommendations. The library works as a bridge between natural language processing (NLP) and recommender systems (RecSys) by integrating with one of the most popular NLP frameworks, Hugging Face Transformers (HF). Transformers4Rec makes state-of-the-art transformer architectures available for RecSys researchers and industry practitioners. Traditional recommendation...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 12
    solo-learn

    solo-learn

    Library of self-supervised methods for visual representation

    A library of self-supervised methods for visual representation learning powered by Pytorch Lightning. A library of self-supervised methods for unsupervised visual representation learning powered by PyTorch Lightning. We aim at providing SOTA self-supervised methods in a comparable environment while, at the same time, implementing training tricks. The library is self-contained, but it is possible to use the models outside of solo-learn.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 13
    A2M — AUDIO TO MIDI

    A2M — AUDIO TO MIDI

    A2M is a desktop app that converts AUDIO TO MIDI in one click.

    ...Using A2M is straightforward: Select an audio file, click Convert, and the application generates a MIDI file automatically in your Downloads/A2M folder. All processing is done locally on your device, no uploads, no accounts, and no telemetry. The app runs on CPU by default, with optional NVIDIA GPU acceleration for faster conversions. Project links: Website: justagwas.com/projects/a2m GitHub: github.com/Justagwas/A2M Releases: github.com/Justagwas/A2M/releases A2M is fully open source and operates only on the files you choose. VirusTotal scan result: https://www.virustotal.com/gui/file/bab8e436c51df6d28e2139f93781fbfd6667ae944cff6f2d51636f04ec50eb69
    Downloads: 10 This Week
    Last Update:
    See Project
  • 14
    Parallel WaveGAN

    Parallel WaveGAN

    Unofficial Parallel WaveGAN

    ...Its main goal is to provide a real-time neural vocoder that can turn mel spectrograms into high-quality speech audio efficiently. The repository is designed to work hand-in-hand with ESPnet-TTS and NVIDIA Tacotron2-style front ends, so you can build complete TTS or singing voice synthesis pipelines. It includes a large collection of “Kaldi-style” recipes for many datasets such as LJSpeech, LibriTTS, VCTK, JSUT, CMU Arctic, and multiple singing voice corpora in Japanese, Mandarin, Korean, and more. The project provides pre-trained models, Colab demos, and example configurations, allowing researchers to quickly evaluate vocoder quality or adapt models to new datasets.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 15
    PC_Workman_HCK

    PC_Workman_HCK

    AI-powered PC monitoring that explains. Not shows numbers/spikes.

    ...Features: - Time travel monitoring - debug issues from hours ago - AI diagnostics with HCK_GPT - Custom fan curves with profiles - Floating always-on-top widget - 2D system map - Cross-GPU support (NVIDIA/AMD/Intel) Four complete rebuilds. 29 features killed. 24,000 lines of optimized code. No team. Solo Dev. BUILD-IN-PUBLIC Free because good tools should be. Alpha v1.6.3—real tools built on real constraints.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 16
    Super Easy AI Installer Tool

    Super Easy AI Installer Tool

    Application that simplifies the installation of AI-related projects

    "Super Easy AI Installer Tool" is a user-friendly application that simplifies the installation process of AI-related repositories for users. The tool is designed to provide an easy-to-use solution for accessing and installing AI repositories with minimal technical hassle to none the tool will automatically handle the installation process, making it easier for users to access and use AI tools. "Super Easy AI Installer Tool" is currently in early development phase and may have a few bugs. But...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 17
    Lightning Bolts

    Lightning Bolts

    Toolbox of models, callbacks, and datasets for AI/ML researchers

    Bolts package provides a variety of components to extend PyTorch Lightning, such as callbacks & datasets, for applied research and production. Torch ORT converts your model into an optimized ONNX graph, speeding up training & inference when using NVIDIA or AMD GPUs. We can introduce sparsity during fine-tuning with SparseML, which ultimately allows us to leverage the DeepSparse engine to see performance improvements at inference time.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 18
    Transformer Reinforcement Learning X

    Transformer Reinforcement Learning X

    A repo for distributed training of language models with Reinforcement

    ...Training support for Hugging Face models is provided by Accelerate-backed trainers, allowing users to fine-tune causal and T5-based language models of up to 20B parameters, such as facebook/opt-6.7b, EleutherAI/gpt-neox-20b, and google/flan-t5-xxl. For models beyond 20B parameters, trlX provides NVIDIA NeMo-backed trainers that leverage efficient parallelism techniques to scale effectively.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 19
    G-Diffuser Bot

    G-Diffuser Bot

    Discord bot and Interface for Stable Diffusion

    The first release of the all-in-one installer version of G-Diffuser is here. This release no longer requires the installation of WSL or Docker and has a systray icon to keep track of and launch G-Diffuser components. The infinite zoom scripts have been updated with some improvements, notably a new compositer script that is hundreds of times faster than before. The first release of the all-in-one installer is here. It notably features much easier "one-click" installation and updating, as well...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 20
    BCI

    BCI

    BCI: Breast Cancer Immunohistochemical Image Generation

    Breast Cancer Immunohistochemical Image Generation through Pyramid Pix2pix. We have released the trained model on BCI and LLVIP datasets. We host a competition for breast cancer immunohistochemistry image generation on Grand Challenge. Project pix2pix provides a python script to generate pix2pix training data in the form of pairs of images {A,B}, where A and B are two different depictions of the same underlying scene, these can be pairs {HE, IHC}. Then we can learn to translate A(HE images)...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 21
    AlphaTensor

    AlphaTensor

    AI discovers faster, efficient algorithms for matrix multiplication

    AlphaTensor, developed by Google DeepMind, is the research codebase accompanying the 2022 Nature publication “Discovering faster matrix multiplication algorithms with reinforcement learning.” The project demonstrates how reinforcement learning can be used to automatically discover efficient algorithms for matrix multiplication — a fundamental operation in computer science and numerical computation. The repository is organized into four main components: algorithms, benchmarking,...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 22
    GFPGAN

    GFPGAN

    GFPGAN aims at developing Practical Algorithms

    GFPGAN aims at developing Practical Algorithms for Real-world Face Restoration. Colab Demo for GFPGAN; (Another Colab Demo for the original paper model) Online demo: Huggingface (return only the cropped face) Online demo: Replicate.ai (may need to sign in, return the whole image). Online demo: Baseten.co (backed by GPU, returns the whole image). We provide a clean version of GFPGAN, which can run without CUDA extensions. So that it can run in Windows or on CPU mode. GFPGAN aims at developing...
    Downloads: 80 This Week
    Last Update:
    See Project
  • 23
    Fairseq

    Fairseq

    Facebook AI Research Sequence-to-Sequence Toolkit written in Python

    Fairseq(-py) is a sequence modeling toolkit that allows researchers and developers to train custom models for translation, summarization, language modeling and other text generation tasks. We provide reference implementations of various sequence modeling papers. Recent work by Microsoft and Google has shown that data parallel training can be made significantly more efficient by sharding the model parameters and optimizer state across data parallel workers. These ideas are encapsulated in the...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 24
    VoiceSmith

    VoiceSmith

    [WIP] VoiceSmith makes training text to speech models easy

    ...If you want to run this on macOS you have to follow the steps in build from source in order to create the installer. This is untested since I don't currently own a Mac. NVIDIA GPU with CUDA support is highly recommended, you can train on CPU otherwise but it will take days if not weeks. VoiceSmith currently uses a two-stage modified DelightfulTTS and UnivNet pipeline.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 25
    SageMaker MXNet Inference Toolkit

    SageMaker MXNet Inference Toolkit

    Toolkit for allowing inference and serving with MXNet in SageMaker

    ...AWS Deep Learning Containers (DLCs) are a set of Docker images for training and serving models in TensorFlow, TensorFlow 2, PyTorch, and MXNet. Deep Learning Containers provide optimized environments with TensorFlow and MXNet, Nvidia CUDA (for GPU instances), and Intel MKL (for CPU instances) libraries and are available in the Amazon Elastic Container Registry (Amazon ECR). The AWS DLCs are used in Amazon SageMaker as the default vehicles for your SageMaker jobs such as training, inference, transforms etc. They've been tested for machine learning workloads on Amazon EC2, Amazon ECS and Amazon EKS services as well.
    Downloads: 0 This Week
    Last Update:
    See Project