Search Results for "gpu processing" - Page 2

Showing 42 open source projects for "gpu processing"

View related business solutions
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • Cloud tools for web scraping and data extraction Icon
    Cloud tools for web scraping and data extraction

    Deploy pre-built tools that crawl websites, extract structured data, and feed your applications. Reliable web data without maintaining scrapers.

    Automate web data collection with cloud tools that handle anti-bot measures, browser rendering, and data transformation out of the box. Extract content from any website, push to vector databases for RAG workflows, or pipe directly into your apps via API. Schedule runs, set up webhooks, and connect to your existing stack. Free tier available, then scale as you need to.
    Explore 10,000+ tools
  • 1
    Imaging Instruments Lite

    Imaging Instruments Lite

    Image processing App for Windows Desktop

    Imaging Instruments lite is a comprehensive image processing application developed following the Model-View-Controller (MVC) design pattern, utilizing Python, Tkinter, and OpenCV. It provides users with image manipulation capabilities, leveraging multi-threading with OpenMP and GPU acceleration using CUDA-C. Fueled by yerba mate and a passion for coding. Created by Agustin Tortolero.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 2
    Warlock-Studio

    Warlock-Studio

    Suite with Real-ESRGAN, BSRGAN , RealESRNet, IRCNN, GFPGAN & RIFE.

    ...Warlock-Studio is a Windows application that uses Real-ESRGAN, BSRGAN, IRCNN, GFPGAN, RealESRNet, RealESRAnime and RIFE Artificial Intelligence models to upscale, restore faces, interpolate frames and reduce noise in images and videos. the application supports GPU acceleration (including multi-GPU setups) and offers batch processing for large workloads. It includes drag-and-drop handling for single or multiple files, optional pre-resize functions, and an automatic tiling system designed to overcome GPU VRAM limitations.
    Leader badge
    Downloads: 21 This Week
    Last Update:
    See Project
  • 3
    HunyuanVideo-I2V

    HunyuanVideo-I2V

    A Customizable Image-to-Video Model based on HunyuanVideo

    HunyuanVideo-I2V is a customizable image-to-video generation framework developed by Tencent, extending the capabilities of HunyuanVideo. It allows for high-quality video creation from still images, using PyTorch and providing pre-trained model weights, inference code, and customizable training options. The system includes a LoRA training code for adding special effects and enhancing video realism, aiming to offer versatile and scalable solutions for generating videos from static image inputs.
    Downloads: 7 This Week
    Last Update:
    See Project
  • 4
    gVirtualXRay

    gVirtualXRay

    Virtual X-Ray Imaging Library on GPU

    gVirtualXRay is a C++ library to simulate X-ray imaging. It is based on the Beer-Lambert law to compute the absorption of light (i.e. photons) by 3D objects (here polygon meshes). It is implemented on the graphics processing unit (GPU) using the OpenGL Shading Language (GLSL). SimpleGVXR is a smaller library build on the top of gVirtualXRay. It provides wrappers to Python, R, Ruby, Tcl, C#, Java, and GNU Octave.
    Leader badge
    Downloads: 19 This Week
    Last Update:
    See Project
  • Say goodbye to broken revenue funnels and poor customer experiences Icon
    Say goodbye to broken revenue funnels and poor customer experiences

    Connect and coordinate your data, signals, tools, and people at every step of the customer journey.

    LeanData is a Demand Management solution that supports all go-to-market strategies such as account-based sales development, geo-based territories, and more. LeanData features a visual, intuitive workflow native to Salesforce that enables users to view their entire lead flow in one interface. LeanData allows users to access the drag-and-drop feature to route their leads. LeanData also features an algorithms match that uses multiple fields in Salesforce.
    Learn More
  • 5
    EvaDB

    EvaDB

    Database system for building simpler and faster AI-powered application

    ...Running these deep learning models on large document or video datasets is costly and time-consuming. For example, the state-of-the-art object detection model takes multiple GPU years to process just a week’s videos from a single traffic monitoring camera. Besides the money spent on hardware, these models also increase the time that you spend waiting for the model inference to finish.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 6
    text-dedup

    text-dedup

    All-in-one text de-duplication

    text-dedup is a Python library that enables efficient deduplication of large text corpora by using MinHash and other probabilistic techniques to detect near-duplicate content. This is especially useful for NLP tasks where duplicated training data can skew model performance. text-dedup scales to billions of documents and offers tools for chunking, hashing, and comparing text efficiently with low memory usage. It supports Jaccard similarity thresholding, parallel execution, and flexible...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 7
    Demucs

    Demucs

    Code for the paper Hybrid Spectrogram and Waveform Source Separation

    Demucs (Deep Extractor for Music Sources) is a deep-learning framework for music source separation—extracting individual instrument or vocal tracks from a mixed audio file. The system is based on a U-Net-like convolutional architecture combined with recurrent and transformer elements to capture both short-term and long-term temporal structure. It processes raw waveforms directly rather than spectrograms, allowing for higher-quality reconstruction and fewer artifacts in separated tracks. The...
    Downloads: 59 This Week
    Last Update:
    See Project
  • 8
    Paddle Quantum

    Paddle Quantum

    Paddle Quantum

    Paddle Quantum (量桨) is the world's first cloud-integrated quantum machine learning platform based on Baidu PaddlePaddle. It supports the building and training of quantum neural networks, making PaddlePaddle the first deep-learning framework in China. Paddle Quantum is feature-rich and easy to use. It provides comprehensive API documentation and tutorials help users get started right away. Paddle Quantum aims at establishing a bridge between artificial intelligence (AI) and quantum computing...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 9
    SageMaker MXNet Inference Toolkit

    SageMaker MXNet Inference Toolkit

    Toolkit for allowing inference and serving with MXNet in SageMaker

    SageMaker MXNet Inference Toolkit is an open-source library for serving MXNet models on Amazon SageMaker. This library provides default pre-processing, predict and postprocessing for certain MXNet model types and utilizes the SageMaker Inference Toolkit for starting up the model server, which is responsible for handling inference requests. AWS Deep Learning Containers (DLCs) are a set of Docker images for training and serving models in TensorFlow, TensorFlow 2, PyTorch, and MXNet. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Free and Open Source HR Software Icon
    Free and Open Source HR Software

    OrangeHRM provides a world-class HRIS experience and offers everything you and your team need to be that HR hero you know that you are.

    Give your HR team the tools they need to streamline administrative tasks, support employees, and make informed decisions with the OrangeHRM free and open source HR software.
    Learn More
  • 10
    TensorFlowOnSpark

    TensorFlowOnSpark

    TensorFlowOnSpark brings TensorFlow programs to Apache Spark clusters

    By combining salient features from the TensorFlow deep learning framework with Apache Spark and Apache Hadoop, TensorFlowOnSpark enables distributed deep learning on a cluster of GPU and CPU servers. It enables both distributed TensorFlow training and inferencing on Spark clusters, with a goal to minimize the amount of code changes required to run existing TensorFlow programs on a shared grid.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 11
    KoGPT

    KoGPT

    KakaoBrain KoGPT (Korean Generative Pre-trained Transformer)

    KoGPT is a Korean language model based on OpenAI’s GPT architecture, designed for various natural language processing (NLP) tasks such as text generation, summarization, and dialogue systems.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 12
    SVoice (Speech Voice Separation)

    SVoice (Speech Voice Separation)

    We provide a PyTorch implementation of the paper Voice Separation

    SVoice is a PyTorch-based implementation of Facebook Research’s study on speaker voice separation as described in the paper “Voice Separation with an Unknown Number of Multiple Speakers.” This project presents a deep learning framework capable of separating mixed audio sequences where several people speak simultaneously, without prior knowledge of how many speakers are present. The model employs gated neural networks with recurrent processing blocks that disentangle voices over multiple...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 13
    PyText

    PyText

    A natural language modeling framework based on PyTorch

    PyText is a deep-learning based NLP modeling framework built on PyTorch. PyText addresses the often-conflicting requirements of enabling rapid experimentation and of serving models at scale. It achieves this by providing simple and extensible interfaces and abstractions for model components, and by using PyTorch’s capabilities of exporting models for inference via the optimized Caffe2 execution engine. We use PyText at Facebook to iterate quickly on new modeling ideas and then seamlessly...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 14

    FastoCloud PRO

    IPTV/NVR/CCTV/Video cloud https://fastocloud.com

    IPTV/Video cloud Features: Cross-platform (Linux, MacOSX, FreeBSD, Raspbian/Armbian) GPU/CPU Encode/Decode/Post Processing Stream statistics CCTV Adaptive hls streams Load balancing Temporary urls HLS push EPG scanning Subtitles to text conversions AD insertion Logo overlay Video effects Relays Timeshifts Catchups Playlists Restream/Transcode from online streaming services like Youtube, Twitch Mozaic Many Outputs Physical Inputs Streaming Protocols File Formats Presets Vods/Series server-side support Pay per view channels Channels on demand HTTP Live Streaming (HLS) server-side support Public API, client server communication via JSON RPC Protocol gzip compression Deep learning video analysis Supported deep learning frameworks: Tensorflow NCSDK Caffe ML Hardware:
    Downloads: 0 This Week
    Last Update:
    See Project
  • 15
    cocoNLP

    cocoNLP

    A Chinese information extraction tool

    cocoNLP is a lightweight natural-language processing toolkit geared toward practical information extraction from raw text, especially for Chinese and mixed Chinese–English content. Instead of requiring a heavy pipeline, it focuses on quick wins such as extracting names, places, organizations, emails, phone numbers, and dates directly from unstructured sentences. The project blends pattern-based methods with NLP heuristics, giving developers dependable results for real-world texts like chats,...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 16
    Tensorpack

    Tensorpack

    A Neural Net Training Interface on TensorFlow, with focus on speed

    ...On common CNNs, it runs training 1.2~5x faster than the equivalent Keras code. Your training can probably gets faster if written with Tensorpack. Scalable data-parallel multi-GPU / distributed training strategy is off-the-shelf to use. Squeeze the best data loading performance of Python with tensorpack.dataflow. Symbolic programming (e.g. tf.data) does not offer the data processing flexibility needed in research. Tensorpack squeezes the most performance out of pure Python with various auto parallelization strategies. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 17
    GLEWpy aims to bring advanced OpenGL extensions to Python. This allows the Python OpenGL developer to use features such as fragment/vertex shaders and image processing on the GPU. It serves as a compliment to PyOpenGL and toolkits such as GLUT and SDL.
    Downloads: 0 This Week
    Last Update:
    See Project