Showing 315 open source projects for "gpu"

View related business solutions
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • Grafana: The open and composable observability platform Icon
    Grafana: The open and composable observability platform

    Faster answers, predictable costs, and no lock-in built by the team helping to make observability accessible to anyone.

    Grafana is the open source analytics & monitoring solution for every database.
    Learn More
  • 1
    CrypTen

    CrypTen

    A framework for Privacy Preserving Machine Learning

    CrypTen is a research framework developed by Facebook Research for privacy-preserving machine learning built directly on top of PyTorch. It provides a secure and intuitive environment for performing computations on encrypted data using Secure Multiparty Computation (SMPC). Designed to make secure computation accessible to machine learning practitioners, CrypTen introduces a CrypTensor object that behaves like a regular PyTorch tensor, allowing users to seamlessly apply automatic...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 2
    cocoNLP

    cocoNLP

    A Chinese information extraction tool

    cocoNLP is a lightweight natural-language processing toolkit geared toward practical information extraction from raw text, especially for Chinese and mixed Chinese–English content. Instead of requiring a heavy pipeline, it focuses on quick wins such as extracting names, places, organizations, emails, phone numbers, and dates directly from unstructured sentences. The project blends pattern-based methods with NLP heuristics, giving developers dependable results for real-world texts like chats,...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 3

    AutoBench

    This program is a benchmark site data extraction util program

    This program is a program that extracts the latest CPU, GPU, Drive and RAM performance scores and rankings from benchmark sites. The Output Data is saved as a csv, xlsx and xls file. CPU information is written by model name and score. GPU information is written by model name and score. Drive information is written by model name and score. RAM information is written by model name and score.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 4
    YouTube-8M

    YouTube-8M

    Starter code for working with the YouTube-8M dataset

    youtube-8m is Google’s open source starter code and reference implementation for training and evaluating machine learning models on the YouTube-8M dataset, one of the largest video understanding datasets publicly released. The repository provides a complete pipeline for video-level and frame-level modeling using TensorFlow, including data reading, model training, evaluation, and inference. It was developed to support the YouTube-8M Video Understanding Challenge (hosted on Kaggle and featured...
    Downloads: 5 This Week
    Last Update:
    See Project
  • Run applications fast and securely in a fully managed environment Icon
    Run applications fast and securely in a fully managed environment

    Cloud Run is a fully-managed compute platform that lets you run your code in a container directly on top of scalable infrastructure.

    Run frontend and backend services, batch jobs, deploy websites and applications, and queue processing workloads without the need to manage infrastructure.
    Try for free
  • 5
    Torchreid

    Torchreid

    Deep learning person re-identification in PyTorch

    Torchreid is a library for deep-learning person re-identification, written in PyTorch and developed for our ICCV’19 project, Omni-Scale Feature Learning for Person Re-Identification. In "deep-person-reid/scripts/", we provide a unified interface to train and test a model. See "scripts/main.py" and "scripts/default_config.py" for more details. The folder "configs/" contains some predefined configs which you can use as a starting point. The code will automatically (download and) load the...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 6
    NiftyNet

    NiftyNet

    An open-source convolutional neural networks platform for research

    An open-source convolutional neural networks platform for medical image analysis and image-guided therapy. NiftyNet is a TensorFlow-based open-source convolutional neural networks (CNNs) platform for research in medical image analysis and image-guided therapy. NiftyNet’s modular structure is designed for sharing networks and pre-trained models. Using this modular structure you can get started with established pre-trained networks using built-in tools. Adapt existing networks to your imaging...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 7
    maskrcnn-benchmark

    maskrcnn-benchmark

    Fast, modular reference implementation of Instance Segmentation

    ...The framework integrates critical components—region proposal networks (RPNs), RoIAlign layers, mask heads, and backbone architectures such as ResNet and FPN—optimized for both accuracy and speed. It supports multi-GPU distributed training, mixed precision, and custom data loaders for new datasets. Built as a reference implementation, it became a foundation for the next-generation Detectron2, yet remains widely used for research needing a stable, reproducible environment. Visualization tools, model zoo checkpoints, and benchmark scripts make it easy to replicate state-of-the-art results or fine-tune models for custom tasks.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 8
    Imogen

    Imogen

    GPU Texture Generator

    ...It allows users to build complex material textures using a graph-based interface, combining operations like blending, noise, filters, and color correction in a non-destructive workflow. Built with Vulkan and ImGui, Imogen provides immediate visual feedback and supports GPU acceleration for high-resolution texture output. It's particularly useful in game development, VFX, and digital art where procedural workflows are valued for their flexibility and speed.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 9
    Tensorpack

    Tensorpack

    A Neural Net Training Interface on TensorFlow, with focus on speed

    ...On common CNNs, it runs training 1.2~5x faster than the equivalent Keras code. Your training can probably gets faster if written with Tensorpack. Scalable data-parallel multi-GPU / distributed training strategy is off-the-shelf to use. Squeeze the best data loading performance of Python with tensorpack.dataflow. Symbolic programming (e.g. tf.data) does not offer the data processing flexibility needed in research. Tensorpack squeezes the most performance out of pure Python with various auto parallelization strategies. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Total Network Visibility for Network Engineers and IT Managers Icon
    Total Network Visibility for Network Engineers and IT Managers

    Network monitoring and troubleshooting is hard. TotalView makes it easy.

    This means every device on your network, and every interface on every device is automatically analyzed for performance, errors, QoS, and configuration.
    Learn More
  • 10
    Video Nonlocal Net

    Video Nonlocal Net

    Non-local Neural Networks for Video Classification

    video-nonlocal-net implements Non-local Neural Networks for video understanding, adding long-range dependency modeling to 2D/3D ConvNet backbones. Non-local blocks compute attention-like responses across all positions in space-time, allowing a feature at one frame and location to aggregate information from distant frames and regions. This formulation improves action recognition and spatiotemporal reasoning, especially for classes requiring context beyond short temporal windows. The repo...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 11
    Finetune Transformer LM

    Finetune Transformer LM

    Code for "Improving Language Understanding by Generative Pre-Training"

    ...The repository centers on reproducing the ROCStories Cloze Test result and includes a single-command training workflow to run the experiment end to end. It documents that runs are non-deterministic due to certain GPU operations and reports a median accuracy over multiple trials that is slightly below the single-run result in the paper, reflecting expected variance in practice. The project ships lightweight training, data, and analysis scripts, keeping the footprint small while making the experimental pipeline transparent. It is provided as archived, research-grade code intended for replication and study rather than continuous development.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 12
    OpenSeq2Seq

    OpenSeq2Seq

    Toolkit for efficient experimentation with Speech Recognition

    ...The toolkit includes ready-made models for neural machine translation, automatic speech recognition, speech synthesis, language modeling, and additional NLP tasks such as sentiment analysis. It supports multi-GPU and multi-node data-parallel training, and integrates with Horovod to scale out across large GPU clusters. Mixed-precision support (float16) is optimized for NVIDIA Volta and Turing GPUs, allowing significant speedups and memory savings without sacrificing model quality. The project comes with configuration-driven training scripts, documentation, and examples that demonstrate how to set up pipelines for tasks.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 13
    Mixup-CIFAR10

    Mixup-CIFAR10

    mixup: Beyond Empirical Risk Minimization

    mixup-cifar10 is the official PyTorch implementation of “mixup: Beyond Empirical Risk Minimization” (Zhang et al., ICLR 2018), a foundational paper introducing mixup, a simple yet powerful data augmentation technique for training deep neural networks. The core idea of mixup is to generate synthetic training examples by taking convex combinations of pairs of input samples and their labels. By interpolating both data and labels, the model learns smoother decision boundaries and becomes more...
    Downloads: 3 This Week
    Last Update:
    See Project
  • 14
    DIGITS

    DIGITS

    Deep Learning GPU training system

    The NVIDIA Deep Learning GPU Training System (DIGITS) puts the power of deep learning into the hands of engineers and data scientists. DIGITS can be used to rapidly train the highly accurate deep neural network (DNNs) for image classification, segmentation and object detection tasks. DIGITS simplifies common deep learning tasks such as managing data, designing and training neural networks on multi-GPU systems, monitoring performance in real-time with advanced visualizations, and selecting the best performing model from the results browser for deployment. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 15

    Face Recognition

    World's simplest facial recognition api for Python & the command line

    Face Recognition is the world's simplest face recognition library. It allows you to recognize and manipulate faces from Python or from the command line using dlib's (a C++ toolkit containing machine learning algorithms and tools) state-of-the-art face recognition built with deep learning. Face Recognition is highly accurate and is able to do a number of things. It can find faces in pictures, manipulate facial features in pictures, identify faces in pictures, and do face recognition on a...
    Downloads: 5 This Week
    Last Update:
    See Project
  • 16

    darc

    Durham Adaptive-optics Real-time Controller

    darc, the Durham Adaptive optics Real-time Controller. For documentation or darctalk client only, select "View all files". For the latest bleeding-edge version, please use: git clone git://git.code.sf.net/p/darc2/code darc (no password required) (this changed May 2013 due to a sourceforge update). If you use darc, please cite with: Basden, A and Myers, R, MNRAS Vol 242, page 1483, 2012
    Downloads: 0 This Week
    Last Update:
    See Project
  • 17
    PyTorch Book

    PyTorch Book

    PyTorch tutorials and fun projects including neural talk

    ...The current version of the code is based on pytorch 1.0.1, if you want to use an older version please git checkout v0.4or git checkout v0.3. Legacy code has better python2/python3 compatibility, CPU/GPU compatibility test. The new version of the code has not been fully tested, it has been tested under GPU and python3. But in theory there shouldn't be too many problems on python2 and CPU. The basic part (the first five chapters) explains the content of PyTorch. This part introduces the main modules in PyTorch and some tools commonly used in deep learning. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 18
    Intel neon

    Intel neon

    Intel® Nervana™ reference deep learning framework

    ...We want to highlight that neon v2.0.0+ has been optimized for much better performance on CPUs by enabling Intel Math Kernel Library (MKL). The DNN (Deep Neural Networks) component of MKL that is used by neon is provided free of charge and downloaded automatically as part of the neon installation. The gpu backend is selected by default, so the above command is equivalent to if a compatible GPU resource is found on the system. The Intel Math Kernel Library takes advantages of the parallelization and vectorization capabilities of Intel Xeon and Xeon Phi systems. When hyperthreading is enabled on the system, we recommend the following KMP_AFFINITY setting to make sure parallel threads are 1:1 mapped to the available physical cores.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 19
    Deepo

    Deepo

    Set up deep learning environment in a single command line

    ...This should work and enables Deepo to use the GPU from inside a docker container.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 20
    BlockSparse

    BlockSparse

    Efficient GPU kernels for block-sparse matrix multiplication

    The blocksparse repository provides efficient GPU kernels (TensorFlow custom ops) for block-sparse matrix multiplication and convolution operations. The idea is to exploit block-level sparsity — i.e. treat matrices or weight tensors as composed of blocks, many of which may be zero or unused — to save compute and memory when sparsity patterns are structured. This is particularly useful in models like Sparse Transformers, where attention matrices or intermediate layers may adopt block-sparse patterns to scale better. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 21
    Sumo Easy Miner

    Sumo Easy Miner

    The most easy, intuitive CPU miner for cryptonote-based cryptocurrency

    A GUI-based Monero mining software designed for ease of use with SumoCoins.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 22
    Deep Learning with Keras and Tensorflow

    Deep Learning with Keras and Tensorflow

    Introduction to Deep Neural Networks with Keras and Tensorflow

    Introduction to Deep Neural Networks with Keras and Tensorflow. To date tensorflow comes in two different packages, namely tensorflow and tensorflow-gpu, whether you want to install the framework with CPU-only or GPU support, respectively. NVIDIA Drivers and CuDNN must be installed and configured before hand. Please refer to the official Tensorflow documentation for further details. Since version 0.9 Theano introduced the libgpuarray in the stable release (it was previously only available in the development version). ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 23

    cphcttoolbox

    Cph CT Toolbox is a selection of Computed Tomography tools

    ...The toolbox apps generally take a set of projections (X-ray intensity measurements) and filter and back project them in order to recreate the image or volume that the projections represent. The project includes both mostly informative CPU implementations and highly efficient GPU implementations. Regular releases are hosted at the Python Package Index.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 24

    landshade

    realtime 3d surface rendering library

    landshade is a C++ library for quick tesselation of complex 3D data like terrain and other curves surfaces at different levels of detail on modern graphics hardware.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 25
    NiftyRec
    This project, developed at UCL London, provides code for tomographic reconstruction. NiftyRec is written in C and has Python and Matlab extensions. Computationally intensive functions have a GPU accelerated version based on CUDA.
    Downloads: 0 This Week
    Last Update:
    See Project