Search Results for "model train design" - Page 10

Showing 286 open source projects for "model train design"

View related business solutions
  • Retool your internal operations Icon
    Retool your internal operations

    Generate secure, production-grade apps that connect to your business data. Not just prototypes, but tools your team can actually deploy.

    Build internal software that meets enterprise security standards without waiting on engineering resources. Retool connects to your databases, APIs, and data sources while maintaining the permissions and controls you need. Create custom dashboards, admin tools, and workflows from natural language prompts—all deployed in your cloud with security baked in. Stop duct-taping operations together, start building in Retool.
    Build an app in Retool
  • Atera all-in-one platform IT management software with AI agents Icon
    Atera all-in-one platform IT management software with AI agents

    Ideal for internal IT departments or managed service providers (MSPs)

    Atera’s AI agents don’t just assist, they act. From detection to resolution, they handle incidents and requests instantly, taking your IT management from automated to autonomous.
    Learn More
  • 1
    DeepCluster

    DeepCluster

    Deep Clustering for Unsupervised Learning of Visual Features

    DeepCluster is a classic self-supervised clustering-based representation learning algorithm that iteratively groups image features and uses the cluster assignments as pseudo-labels to train the network. In each round, features produced by the network are clustered (e.g. k-means), and the cluster IDs become supervision targets in the next epoch, encouraging the model to refine its representation to better separate semantic groups. This alternating “cluster & train” scheme helps the model gradually discover meaningful structure without labels. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 2
    Multi-Agent Emergence Environments

    Multi-Agent Emergence Environments

    Environment generation code for the paper "Emergent Tool Use"

    multi-agent-emergence-environments is an open source research environment framework developed by OpenAI for the study of emergent behaviors in multi-agent systems. It was designed for the experiments described in the paper and blog post “Emergent Tool Use from Multi-Agent Autocurricula”, which investigated how complex cooperative and competitive behaviors can evolve through self-play. The repository provides environment generation code that builds on the mujoco-worldgen package, enabling...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 3
    EfficientNet Keras

    EfficientNet Keras

    Implementation of EfficientNet model. Keras and TensorFlow Keras

    This repository contains a Keras (and TensorFlow Keras) reimplementation of EfficientNet, a lightweight convolutional neural network architecture achieving state-of-the-art accuracy with an order of magnitude fewer parameters and FLOPS, on both ImageNet and five other commonly used transfer learning datasets. Convolutional Neural Networks (ConvNets) are commonly developed at a fixed resource budget, and then scaled up for better accuracy if more resources are available. In this paper, we...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 4
    Age and Gender Estimation

    Age and Gender Estimation

    Keras implementation of a CNN network for age and gender estimation

    Keras implementation of a CNN network for age and gender estimation. This is a Keras implementation of a CNN for estimating age and gender from a face image [1, 2]. In training, the IMDB-WIKI dataset is used. Because the face images in the UTKFace dataset is tightly cropped (there is no margin around the face region), faces should also be cropped in demo.py if weights trained by the UTKFace dataset is used. Please set the margin argument to 0 for tight cropping. You can evaluate a trained...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Free and Open Source HR Software Icon
    Free and Open Source HR Software

    OrangeHRM provides a world-class HRIS experience and offers everything you and your team need to be that HR hero you know that you are.

    Give your HR team the tools they need to streamline administrative tasks, support employees, and make informed decisions with the OrangeHRM free and open source HR software.
    Learn More
  • 5
    MMdnn

    MMdnn

    Tools to help users inter-operate among deep learning frameworks

    MMdnn is a set of tools to help users inter-operate among different deep learning frameworks. E.g. model conversion and visualization. Convert models between Caffe, Keras, MXNet, Tensorflow, CNTK, PyTorch Onnx and CoreML. MMdnn is a comprehensive and cross-framework tool to convert, visualize and diagnose deep learning (DL) models. The "MM" stands for model management, and "dnn" is the acronym of deep neural network. We implement a universal converter to convert DL models between frameworks, which means you can train a model with one framework and deploy it with another. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 6
    HyperGAN

    HyperGAN

    Composable GAN framework with api and user interface

    A composable GAN built for developers, researchers, and artists. HyperGAN builds generative adversarial networks in PyTorch and makes them easy to train and share. HyperGAN is currently in pre-release and open beta. Everyone will have different goals when using hypergan. HyperGAN is currently beta. We are still searching for a default cross-data-set configuration. Each of the examples supports search. Automated search can help find good configurations. If you are unsure, you can start with...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 7
    Delta ML

    Delta ML

    Deep learning based natural language and speech processing platform

    ...DELTA is mainly implemented using TensorFlow and Python 3. DELTA has been used for developing several state-of-the-art algorithms for publications and delivering real production to serve millions of users. It helps you to train, develop, and deploy NLP and/or speech models. Use configuration files to easily tune parameters and network structures. What you see in training is what you get in serving: all data processing and features extraction are integrated into a model graph. Text classification, named entity recognition, question and answering, text summarization, etc. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 8
    TFKit

    TFKit

    Handling multiple nlp task in one pipeline

    ...It leverages the use of transformers on many tasks with different models in this all-in-one framework. All you need is a little change of config. You can use tfkit for model training and evaluation with tfkit-train and tfkit-eval. The key to combine different task together is to make different task with same data format. All data will be in csv format - tfkit will use csv for all task, normally it will have two columns, first columns is the input of models, the second column is the output of models. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 9
    GPT2 for Multiple Languages

    GPT2 for Multiple Languages

    GPT2 for Multiple Languages, including pretrained models

    With just 2 clicks (not including Colab auth process), the 1.5B pretrained Chinese model demo is ready to go. The contents in this repository are for academic research purpose, and we do not provide any conclusive remarks. Research supported with Cloud TPUs from Google's TensorFlow Research Cloud (TFRC) Simplifed GPT2 train scripts(based on Grover, supporting TPUs). Ported bert tokenizer, multilingual corpus compatible. 1.5B GPT2 pretrained Chinese model (~15G corpus, 10w steps). ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Peer to Peer Recognition Brings Teams Together Icon
    Peer to Peer Recognition Brings Teams Together

    The modern employee engagement platform for the modern workforce

    Create a positive and energetic workplace environment with Motivosity, an innovative employee recognition and engagement platform. With Motivosity, employees can give each other small monetary bonuses for doing great things, promoting trust, collaboration, and appreciation in the workplace. The software solution comes with features such as an open-currency open-reward system, insights and analytics, dynamic organization chart, award programs, milestones, and more.
    Learn More
  • 10
    Higher

    Higher

    higher is a pytorch library

    ...By offering a clear and flexible interface, higher simplifies building complex learning algorithms that require gradient tracking across multiple update levels. Its design ensures compatibility with existing PyTorch models.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 11
    SageMaker Containers

    SageMaker Containers

    Create SageMaker-compatible Docker containers

    Amazon SageMaker is a fully managed service for data science and machine learning (ML) workflows. You can use Amazon SageMaker to simplify the process of building, training, and deploying ML models. To train a model, you can include your training script and dependencies in a Docker container that runs your training code. A container provides an effectively isolated environment, ensuring a consistent runtime and reliable training process. The SageMaker Training Toolkit can be easily added to any Docker container, making it compatible with SageMaker for training models. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 12
    End-to-End Negotiator

    End-to-End Negotiator

    Deal or No Deal? End-to-End Learning for Negotiation Dialogues

    ...The framework provides code for both supervised learning (training from human dialogue data) and reinforcement learning (via self-play and rollout-based planning). It introduces a hierarchical latent model, where high-level intents are first clustered and then translated into coherent language, improving dialogue diversity and goal consistency. The repository also includes the Negotiate dataset, comprising over 5,800 dialogues across 2,200 unique scenarios.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 13
    PyTorch GAN Zoo

    PyTorch GAN Zoo

    A mix of GAN implementations including progressive growing

    ...The project provides modular implementations of popular GAN architectures, including Progressive Growing of GANs (PGAN), DCGAN, and an experimental StyleGAN version. It is built to support both researchers and developers who want to train, evaluate, and extend GANs efficiently across diverse datasets such as CelebA-HQ, FashionGen, DTD, and CIFAR-10. In addition to core GAN training, the repository includes tools for model evaluation, such as Inception Score and SWD metrics, as well as advanced features like GDPP for diverse generation and AC-GAN conditioning for class-specific synthesis. ...
    Downloads: 3 This Week
    Last Update:
    See Project
  • 14
    textgenrnn

    textgenrnn

    Easily train your own text-generating neural network

    With textgenrnn you can easily train your own text-generating neural network of any size and complexity on any text dataset with a few lines of code. A modern neural network architecture that utilizes new techniques as attention-weighting and skip-embedding to accelerate training and improve model quality. Train on and generate text at either the character-level or word-level.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 15
    Retro

    Retro

    Retro Games in Gym

    RETRO (Retrieval-Enhanced Transformer) is a large language model architecture developed by OpenAI that augments transformer models with a retrieval mechanism. Instead of relying solely on learned parameters, RETRO retrieves relevant documents from a large external database during inference, allowing it to ground responses in external knowledge. This design improves factual accuracy, reduces hallucinations, and enables smaller models to perform comparably to much larger ones by leveraging retrieval. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 16
    NLP Best Practices

    NLP Best Practices

    Natural Language Processing Best Practices & Examples

    In recent years, natural language processing (NLP) has seen quick growth in quality and usability, and this has helped to drive business adoption of artificial intelligence (AI) solutions. In the last few years, researchers have been applying newer deep learning methods to NLP. Data scientists started moving from traditional methods to state-of-the-art (SOTA) deep neural network (DNN) algorithms which use language models pretrained on large text corpora. This repository contains examples and...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 17
    Affine Transformation of Virtual Object

    Affine Transformation of Virtual Object

    Transformation virtual 3D object using a finger gesture-based system

    Affine transformation virtual 3D object using a finger gesture-based interactive system in the virtual environment. A convolutional neural network (CNN) based thumb and index fingertip detection system are presented here for seamless interaction with a virtual 3D object in the virtual environment. First, a two-stage CNN is employed to detect the hand and fingertips, and using the information of the fingertip position, the scale, rotation, translation, and in general, the affine...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 18
    CrypTen

    CrypTen

    A framework for Privacy Preserving Machine Learning

    ...Designed to make secure computation accessible to machine learning practitioners, CrypTen introduces a CrypTensor object that behaves like a regular PyTorch tensor, allowing users to seamlessly apply automatic differentiation and neural network operations. Its design mirrors PyTorch’s modular and library-based structure, enabling flexible experimentation, debugging, and model development. The framework supports both encryption and decryption of tensors and operations such as addition and multiplication over encrypted values. Although not yet production-ready, CrypTen focuses on advancing real-world secure ML applications, such as training and inference over private datasets, without exposing sensitive data.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 19
    jieba

    jieba

    Stuttering Chinese word segmentation

    ...The search engine mode, on the basis of the precise mode, divides the long words again to improve the recall rate, which is suitable for word segmentation in search engines. The paddle mode uses the PaddlePaddle deep learning framework to train the sequence labeling (bidirectional GRU) network model to achieve word segmentation. Also supports part-of-speech tagging. To use paddle mode, you need to install paddlepaddle-tiny, pip install paddlepaddle-tiny==1.6.1. Currently paddle mode supports jieba v0.40 and above. For versions below jieba v0.40, please upgrade jieba, pip install jieba --upgrade.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 20
    Image Super-Resolution (ISR)

    Image Super-Resolution (ISR)

    Super-scale your images and run experiments with Residual Dense

    The goal of this project is to upscale and improve the quality of low-resolution images. This project contains Keras implementations of different Residual Dense Networks for Single Image Super-Resolution (ISR) as well as scripts to train these networks using content and adversarial loss components. Docker scripts and Google Colab notebooks are available to carry training and prediction. Also, we provide scripts to facilitate training on the cloud with AWS and Nvidia-docker with only a few commands. When training your own model, start with only PSNR loss (50+ epochs, depending on the dataset) and only then introduce GANS and feature loss. ...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 21
    MatchZoo

    MatchZoo

    Facilitating the design, comparison and sharing of deep text models

    The goal of MatchZoo is to provide a high-quality codebase for deep text matching research, such as document retrieval, question answering, conversational response ranking, and paraphrase identification. With the unified data processing pipeline, simplified model configuration and automatic hyper-parameters tunning features equipped, MatchZoo is flexible and easy to use. Preprocess your input data in three lines of code, keep track parameters to be passed into the model. Make use of MatchZoo...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 22
    YouTube-8M

    YouTube-8M

    Starter code for working with the YouTube-8M dataset

    youtube-8m is Google’s open source starter code and reference implementation for training and evaluating machine learning models on the YouTube-8M dataset, one of the largest video understanding datasets publicly released. The repository provides a complete pipeline for video-level and frame-level modeling using TensorFlow, including data reading, model training, evaluation, and inference. It was developed to support the YouTube-8M Video Understanding Challenge (hosted on Kaggle and featured at ICCV 2019), enabling researchers and practitioners to benchmark video classification models on large-scale datasets with over millions of labeled videos. The code demonstrates how to process frame-level features, train logistic and deep learning models, evaluate them using metrics like global Average Precision (gAP) and mean Average Precision (mAP), and export trained models for MediaPipe inference.
    Downloads: 8 This Week
    Last Update:
    See Project
  • 23
    Torchreid

    Torchreid

    Deep learning person re-identification in PyTorch

    Torchreid is a library for deep-learning person re-identification, written in PyTorch and developed for our ICCV’19 project, Omni-Scale Feature Learning for Person Re-Identification. In "deep-person-reid/scripts/", we provide a unified interface to train and test a model. See "scripts/main.py" and "scripts/default_config.py" for more details. The folder "configs/" contains some predefined configs which you can use as a starting point. The code will automatically (download and) load the ImageNet pretrained weights. After the training is done, the model will be saved as "log/osnet_x1_0_market1501_softmax_cosinelr/model.pth.tar-250". ...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 24
    PyTorch Natural Language Processing

    PyTorch Natural Language Processing

    Basic Utilities for PyTorch Natural Language Processing (NLP)

    ...PyTorch-NLP comes with pre-trained embeddings, samplers, dataset loaders, metrics, neural network modules and text encoders. It’s open-source software, released under the BSD3 license. With your batch in hand, you can use PyTorch to develop and train your model using gradient descent. For example, check out this example code for training on the Stanford Natural Language Inference (SNLI) Corpus. Now you've setup your pipeline, you may want to ensure that some functions run deterministically. Wrap any code that's random, with fork_rng and you'll be good to go. Now that you've computed your vocabulary, you may want to make use of pre-trained word vectors to set your embeddings.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 25
    Texar

    Texar

    Toolkit for Machine Learning, Natural Language Processing

    Texar is a toolkit aiming to support a broad set of machine learning, especially natural language processing and text generation tasks. Texar provides a library of easy-to-use ML modules and functionalities for composing whatever models and algorithms. The tool is designed for both researchers and practitioners for fast prototyping and experimentation. Texar was originally developed and is actively contributed by Petuum and CMU in collaboration with other institutes. A mirror of this...
    Downloads: 0 This Week
    Last Update:
    See Project