CutLER
Code release for Cut and Learn for Unsupervised Object Detection
...The codebase provides training and inference scripts, model configs, and references to benchmarking results that report large gains over prior unsupervised baselines. It’s intended for researchers exploring self-supervised and unsupervised recognition, offering a practical path to scale beyond costly labeled corpora. The README links papers and gives a high-level overview of components and expected outputs, with pointers to demos and assets. The repository is actively starred and structured as a typical research release with license, contribution guidelines, and security policy.