With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.
You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
Try free now
Cloud tools for web scraping and data extraction
Deploy pre-built tools that crawl websites, extract structured data, and feed your applications. Reliable web data without maintaining scrapers.
Automate web data collection with cloud tools that handle anti-bot measures, browser rendering, and data transformation out of the box. Extract content from any website, push to vector databases for RAG workflows, or pipe directly into your apps via API. Schedule runs, set up webhooks, and connect to your existing stack. Free tier available, then scale as you need to.
Code release for Cut and Learn for Unsupervised Object Detection
...The method follows a “Cut-and-LEaRn” recipe: bootstrap object proposals, refine them iteratively, and train detection/segmentation heads to discover objects across diverse datasets. The codebase provides training and inference scripts, model configs, and references to benchmarking results that report large gains over prior unsupervised baselines. It’s intended for researchers exploring self-supervised and unsupervised recognition, offering a practical path to scale beyond costly labeled corpora. The README links papers and gives a high-level overview of components and expected outputs, with pointers to demos and assets. ...
GluonCV provides implementations of state-of-the-art (SOTA) deep learning algorithms in computer vision. It aims to help engineers, researchers, and students quickly prototype products, validate new ideas and learn computer vision. It features training scripts that reproduce SOTA results reported in latest papers, a large set of pre-trained models, carefully designed APIs and easy-to-understand implementations and community support. From fundamental image classification, object detection, semantic segmentation and pose estimation, to instance segmentation and video action recognition. ...
Deep Hough Voting for 3D Object Detection in Point Clouds
...VoteNet works end-to-end: it learns the voting, aggregation, and bounding-box regression components jointly, enabling strong detection accuracy without relying on 2D proxies or voxelization. The codebase includes data preparation for indoor datasets (SUN RGB-D, ScanNet), training and evaluation scripts, and demo utilities to visualize predicted boxes over point clouds.
A general python framework for visual object tracking and video object segmentation, based on PyTorch. Official implementation of the RTS (ECCV 2022), ToMP (CVPR 2022), KeepTrack (ICCV 2021), LWL (ECCV 2020), KYS (ECCV 2020), PrDiMP (CVPR 2020), DiMP (ICCV 2019), and ATOM (CVPR 2019) trackers, including complete training code and trained models.
Run applications fast and securely in a fully managed environment
Cloud Run is a fully-managed compute platform that lets you run your code in a container directly on top of scalable infrastructure.
Run frontend and backend services, batch jobs, deploy websites and applications, and queue processing workloads without the need to manage infrastructure.
The implementation of an algorithm presented in the CVPR18 paper
DetectAndTrack is the reference implementation for the CVPR 2018 paper “Detect-and-Track: Efficient Pose Estimation in Videos,” focusing on human keypoint detection and tracking across video frames. The system combines per-frame pose detection with a tracking mechanism to maintain identities over time, enabling efficient multi-person pose estimation in video. Code and instructions are organized to replicate paper results and to serve as a starting point for researchers working on pose in...