Showing 9 open source projects for "network data speed"

View related business solutions
  • Atera all-in-one platform IT management software with AI agents Icon
    Atera all-in-one platform IT management software with AI agents

    Ideal for internal IT departments or managed service providers (MSPs)

    Atera’s AI agents don’t just assist, they act. From detection to resolution, they handle incidents and requests instantly, taking your IT management from automated to autonomous.
    Learn More
  • Manage queues and reduce operational costs Icon
    Manage queues and reduce operational costs

    Improve the waiting experience, gather service intelligence, and make data-driven decisions.

    Long queues cost businesses across the world trillions of dollars in lost sales. Customers who experience poor queuing are less likely to stay and recommend your business. Compare the performance of different locations and departments. Monitor the number of visitors waiting, average wait times, and other metrics. Give your staff the tools they need to supercharge your customer service. Recognize your team’s achievements and identify opportunities for growth. Easily measure and share performance results. Use service reports to keep track of KPIs and the effectiveness of service strategy. Eliminate in-person lines by allowing customers to join a virtual waitlist using their phones. Monitor your line in real-time. Let customers safely wait in their car, at home, or outside. Notify them when you are ready to serve them. Give customers regular updates and wait times. Make them feel like VIPs by talking to them directly and asking for their feedback.
    Learn More
  • 1
    DeepDetect

    DeepDetect

    Deep Learning API and Server in C++14 support for Caffe, PyTorch

    ...While the Open Source Deep Learning Server is the core element, with REST API, and multi-platform support that allows training & inference everywhere, the Deep Learning Platform allows higher level management for training neural network models and using them as if they were simple code snippets. Ready for applications of image tagging, object detection, segmentation, OCR, Audio, Video, Text classification, CSV for tabular data and time series. Neural network templates for the most effective architectures for GPU, CPU, and Embedded devices. Training in a few hours and with small data thanks to 25+ pre-trained models. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 2
    Norfair

    Norfair

    Lightweight Python library for adding real-time multi-object tracking

    Norfair is a customizable lightweight Python library for real-time multi-object tracking. Using Norfair, you can add tracking capabilities to any detector with just a few lines of code. Any detector expressing its detections as a series of (x, y) coordinates can be used with Norfair. This includes detectors performing tasks such as object or keypoint detection. It can easily be inserted into complex video processing pipelines to add tracking to existing projects. At the same time, it is...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 3
    playqt

    playqt

    GUI version of ffplay for Windows

    playqt is a Windows GUI version of the well known ffplay program and has been enhanced with Object Detection capabilities. It can process multiple types of media including real time streams. An integrated camera control feature allows control over the camera parameters as well as automatic network configuration and connection. See the README under the files tab for configuration info. Real time object counting is implemented using YOLO detection algorithm. The program can be used...
    Downloads: 3 This Week
    Last Update:
    See Project
  • 4
    YOLO ROS

    YOLO ROS

    YOLO ROS: Real-Time Object Detection for ROS

    ...You only look once (YOLO) is a state-of-the-art, real-time object detection system. In the following ROS package, you are able to use YOLO (V3) on GPU and CPU. The pre-trained model of the convolutional neural network is able to detect pre-trained classes including the data set from VOC and COCO, or you can also create a network with your own detection objects. The YOLO packages have been tested under ROS Noetic and Ubuntu 20.04. We also provide branches that work under ROS Melodic, ROS Foxy and ROS2. Darknet on the CPU is fast (approximately 1.5 seconds on an Intel Core i7-6700HQ CPU @ 2.60GHz × 8) but it's like 500 times faster on GPU! ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • InEight is a leader in construction project controls software Icon
    InEight is a leader in construction project controls software

    InEight serves contractors, owners, and engineers in capital construction

    Minimize risks, gain operational efficiency, control project costs, and make confident, informed decisions. InEight software has your back during every stage of construction, from accurate pre-planning to predictable execution and completion. When project teams collaborate effectively, every decision is backed by precise, authoritative insights.
    Learn More
  • 5
    Computer Vision Pretrained Models

    Computer Vision Pretrained Models

    A collection of computer vision pre-trained models

    ...You can spend years building a decent image recognition algorithm from scratch or you can take the inception model (a pre-trained model) from Google which was built on ImageNet data to identify images in those pictures. The model generates bounding boxes and segmentation masks for each instance of an object in the image. It's based on Feature Pyramid Network (FPN) and a ResNet101 backbone. TensorFlow implementation of 'YOLO: Real-Time Object Detection', with training and an actual support for real-time running on mobile devices. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 6
    VoteNet

    VoteNet

    Deep Hough Voting for 3D Object Detection in Point Clouds

    ...It tackles the challenge that object centroids in 3D scenes often don’t lie on any input surface point by having each point “vote” for potential object centers; these votes are then clustered to propose object hypotheses. Once cluster centers are formed, the network regresses bounding boxes around them and classifies them. VoteNet works end-to-end: it learns the voting, aggregation, and bounding-box regression components jointly, enabling strong detection accuracy without relying on 2D proxies or voxelization. The codebase includes data preparation for indoor datasets (SUN RGB-D, ScanNet), training and evaluation scripts, and demo utilities to visualize predicted boxes over point clouds.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 7
    PyTracking

    PyTracking

    Visual tracking library based on PyTorch

    A general python framework for visual object tracking and video object segmentation, based on PyTorch. Official implementation of the RTS (ECCV 2022), ToMP (CVPR 2022), KeepTrack (ICCV 2021), LWL (ECCV 2020), KYS (ECCV 2020), PrDiMP (CVPR 2020), DiMP (ICCV 2019), and ATOM (CVPR 2019) trackers, including complete training code and trained models.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 8
    DIGITS

    DIGITS

    Deep Learning GPU training system

    The NVIDIA Deep Learning GPU Training System (DIGITS) puts the power of deep learning into the hands of engineers and data scientists. DIGITS can be used to rapidly train the highly accurate deep neural network (DNNs) for image classification, segmentation and object detection tasks. DIGITS simplifies common deep learning tasks such as managing data, designing and training neural networks on multi-GPU systems, monitoring performance in real-time with advanced visualizations, and selecting the best performing model from the results browser for deployment. ...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 9
    VOC-DPM

    VOC-DPM

    Object detection system using deformable part models (DPMs)

    ...It implements both latent SVM training (where part assignments are treated as latent variables) and weak-label structural SVM (WL-SSVM) for learning from partially labeled data. The code integrates several enhancements: a star-cascade detection algorithm to speed up screening, context rescoring (re-ranking detections using contextual information), and various optimizations like in-memory training (rather than large on-disk data files).
    Downloads: 0 This Week
    Last Update:
    See Project
  • Dynamic Work and Complex Project Management Platform | Quickbase Icon
    Dynamic Work and Complex Project Management Platform | Quickbase

    Quickbase is the leading application platform for dynamic work.

    Our no-code platform lets you easily create, connect, and customize enterprise applications that fix visibility and workflow gaps without replacing a single system.
    Learn More
  • Previous
  • You're on page 1
  • Next