CutLER
Code release for Cut and Learn for Unsupervised Object Detection
...The method follows a “Cut-and-LEaRn” recipe: bootstrap object proposals, refine them iteratively, and train detection/segmentation heads to discover objects across diverse datasets. The codebase provides training and inference scripts, model configs, and references to benchmarking results that report large gains over prior unsupervised baselines. It’s intended for researchers exploring self-supervised and unsupervised recognition, offering a practical path to scale beyond costly labeled corpora. The README links papers and gives a high-level overview of components and expected outputs, with pointers to demos and assets. ...