Showing 2 open source projects for "python samples"

View related business solutions
  • The CI/CD Platform built for Mobile DevOps Icon
    The CI/CD Platform built for Mobile DevOps

    For mobile app developers interested in a powerful CI/CD platform for mobile app development and mobile DevOps

    Save time, money, and developer frustration with fast, flexible, and scalable mobile CI/CD that just works. Whether you swear by native or would rather go cross-platform, we have you covered. From Swift to Objective-C, Java to Kotlin, as well as Xamarin, Cordova, Ionic, React Native, and Flutter: Whatever you choose, we will automatically configure your initial workflows and have you building in minutes.
    Learn More
  • Powering the next decade of business messaging | Twilio MessagingX Icon
    Powering the next decade of business messaging | Twilio MessagingX

    For organizations interested programmable APIs built on a scalable business messaging platform

    Build unique experiences across SMS, MMS, Facebook Messenger, and WhatsApp – with our unified messaging APIs.
    Learn More
  • 1
    Hello AI World

    Hello AI World

    Guide to deploying deep-learning inference networks

    ...The tutorial focuses on networks related to computer vision, and includes the use of live cameras. You’ll also get to code your own easy-to-follow recognition program in Python or C++, and train your own DNN models onboard Jetson with PyTorch. Ready to dive into deep learning? It only takes two days. We’ll provide you with all the tools you need, including easy to follow guides, software samples such as TensorRT code, and even pre-trained network models including ImageNet and DetectNet examples. Follow these directions to integrate deep learning into your platform of choice and quickly develop a proof-of-concept design.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 2
    Objectron

    Objectron

    A dataset of short, object-centric video clips

    The Objectron dataset is a collection of short, object-centric video clips, which are accompanied by AR session metadata that includes camera poses, sparse point-clouds and characterization of the planar surfaces in the surrounding environment. In each video, the camera moves around the object, capturing it from different angles. The data also contain manually annotated 3D bounding boxes for each object, which describe the object’s position, orientation, and dimensions. The dataset consists...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • Next