Showing 3 open source projects for "python sample"

View related business solutions
  • Keep company data safe with Chrome Enterprise Icon
    Keep company data safe with Chrome Enterprise

    Protect your business with AI policies and data loss prevention in the browser.
    Download Chrome
  • Simple, Secure Domain Registration Icon
    Simple, Secure Domain Registration

    Get your domain at wholesale price. Cloudflare offers simple, secure registration with no markups, plus free DNS, CDN, and SSL integration.

    Register or renew your domain and pay only what we pay. No markups, hidden fees, or surprise add-ons. Choose from over 400 TLDs (.com, .ai, .dev). Every domain is integrated with Cloudflare's industry-leading DNS, CDN, and free SSL to make your site faster and more secure. Simple, secure, at-cost domain registration.
    Sign up for free
  • 1
    Opacus

    Opacus

    Training PyTorch models with differential privacy

    Opacus is a library that enables training PyTorch models with differential privacy. It supports training with minimal code changes required on the client, has little impact on training performance, and allows the client to online track the privacy budget expended at any given moment. Vectorized per-sample gradient computation that is 10x faster than micro batching. Supports most types of PyTorch models and can be used with minimal modification to the original neural network. Open source...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 2
    I3D models trained on Kinetics

    I3D models trained on Kinetics

    Convolutional neural network model for video classification

    ... RGB and optical flow input streams. The models have achieved state-of-the-art results on benchmark datasets such as UCF101 and HMDB51, and also won first place in the CVPR 2017 Charades Challenge. The project provides TensorFlow and Sonnet-based implementations, pretrained checkpoints, and example scripts for evaluating or fine-tuning models. It also offers sample data, including preprocessed video frames and optical flow arrays, to demonstrate how to run inference and visualize outputs.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 3
    Compare GAN

    Compare GAN

    Compare GAN code

    compare_gan is a research codebase that standardizes how Generative Adversarial Networks are trained and evaluated so results are comparable across papers and datasets. It offers reference implementations for popular GAN architectures and losses, plus a consistent training harness to remove confounding differences in optimization or preprocessing. The library’s evaluation suite includes widely used metrics and diagnostics that quantify sample quality, diversity, and mode coverage...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • Next