• Ship AI Apps Faster with Vertex AI Icon
    Ship AI Apps Faster with Vertex AI

    Go from idea to deployed AI app without managing infrastructure. Vertex AI offers one platform for the entire AI development lifecycle.

    Ship AI apps and features faster with Vertex AI—your end-to-end AI platform. Access Gemini 3 and 200+ foundation models, fine-tune for your needs, and deploy with enterprise-grade MLOps. Build chatbots, agents, or custom models. New customers get $300 in free credit.
    Try Vertex AI Free
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • 1
    Flax

    Flax

    Flax is a neural network library for JAX

    ...The library is widely used in vision, language, and reinforcement learning, often serving as a thin layer atop NumPy-like JAX primitives. Tutorials and examples show patterns for multi-host training, mixed precision, and advanced input pipelines that scale from laptops to TPUs.
    Downloads: 6 This Week
    Last Update:
    See Project
  • 2
    AIMET

    AIMET

    AIMET is a library that provides advanced quantization and compression

    Qualcomm Innovation Center (QuIC) is at the forefront of enabling low-power inference at the edge through its pioneering model-efficiency research. QuIC has a mission to help migrate the ecosystem toward fixed-point inference. With this goal, QuIC presents the AI Model Efficiency Toolkit (AIMET) - a library that provides advanced quantization and compression techniques for trained neural network models. AIMET enables neural networks to run more efficiently on fixed-point AI hardware...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 3
    Sonnet

    Sonnet

    TensorFlow-based neural network library

    ...Sonnet’s programming model revolves around a single concept: modules. These modules can hold references to parameters, other modules and methods that apply some function on the user input. There are a number of predefined modules that already ship with Sonnet, making it quite powerful and yet simple at the same time. Users are also encouraged to build their own modules. Sonnet is designed to be extremely unopinionated about your use of modules. It is simple to understand, and offers clear and focused code.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 4
    Neural Network Visualization

    Neural Network Visualization

    Project for processing neural networks and rendering to gain insights

    ...It provides an interactive, graphical representation of how data flows through neural network layers, offering a unique educational experience for those new to deep learning or looking to explain it visually. By animating input, weights, activations, and outputs, the tool demystifies neural network operations and helps users intuitively grasp complex concepts. Its lightweight codebase is great for customization and teaching purposes.
    Downloads: 2 This Week
    Last Update:
    See Project
  • Run Any Workload on Compute Engine VMs Icon
    Run Any Workload on Compute Engine VMs

    From dev environments to AI training, choose preset or custom VMs with 1–96 vCPUs and industry-leading 99.95% uptime SLA.

    Compute Engine delivers high-performance virtual machines for web apps, databases, containers, and AI workloads. Choose from general-purpose, compute-optimized, or GPU/TPU-accelerated machine types—or build custom VMs to match your exact specs. With live migration and automatic failover, your workloads stay online. New customers get $300 in free credits.
    Try Compute Engine
  • 5
    I3D models trained on Kinetics

    I3D models trained on Kinetics

    Convolutional neural network model for video classification

    ...The I3D model extends the 2D convolutional structure of Inception-v1 into 3D, allowing it to capture spatial and temporal information from videos for action recognition. This repository includes pretrained I3D models on the Kinetics dataset, with both RGB and optical flow input streams. The models have achieved state-of-the-art results on benchmark datasets such as UCF101 and HMDB51, and also won first place in the CVPR 2017 Charades Challenge. The project provides TensorFlow and Sonnet-based implementations, pretrained checkpoints, and example scripts for evaluating or fine-tuning models. It also offers sample data, including preprocessed video frames and optical flow arrays, to demonstrate how to run inference and visualize outputs.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 6
    Mixup-CIFAR10

    Mixup-CIFAR10

    mixup: Beyond Empirical Risk Minimization

    mixup-cifar10 is the official PyTorch implementation of “mixup: Beyond Empirical Risk Minimization” (Zhang et al., ICLR 2018), a foundational paper introducing mixup, a simple yet powerful data augmentation technique for training deep neural networks. The core idea of mixup is to generate synthetic training examples by taking convex combinations of pairs of input samples and their labels. By interpolating both data and labels, the model learns smoother decision boundaries and becomes more robust to noise and adversarial examples. This repository implements mixup for the CIFAR-10 dataset, showcasing its effectiveness in improving generalization, stability, and calibration of neural networks. ...
    Downloads: 1 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • Next
MongoDB Logo MongoDB