Showing 20 open source projects for "apache"

View related business solutions
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • Grafana: The open and composable observability platform Icon
    Grafana: The open and composable observability platform

    Faster answers, predictable costs, and no lock-in built by the team helping to make observability accessible to anyone.

    Grafana is the open source analytics & monitoring solution for every database.
    Learn More
  • 1
    PennyLane

    PennyLane

    A cross-platform Python library for differentiable programming

    A cross-platform Python library for differentiable programming of quantum computers. Train a quantum computer the same way as a neural network. Built-in automatic differentiation of quantum circuits, using the near-term quantum devices directly. You can combine multiple quantum devices with classical processing arbitrarily! Support for hybrid quantum and classical models, and compatible with existing machine learning libraries. Quantum circuits can be set up to interface with either NumPy,...
    Downloads: 7 This Week
    Last Update:
    See Project
  • 2
    Stanza

    Stanza

    Stanford NLP Python library for many human languages

    Stanza is a collection of accurate and efficient tools for the linguistic analysis of many human languages. Starting from raw text to syntactic analysis and entity recognition, Stanza brings state-of-the-art NLP models to languages of your choosing. Stanza is a Python natural language analysis package. It contains tools, which can be used in a pipeline, to convert a string containing human language text into lists of sentences and words, to generate base forms of those words, their parts of...
    Downloads: 5 This Week
    Last Update:
    See Project
  • 3
    Opacus

    Opacus

    Training PyTorch models with differential privacy

    Opacus is a library that enables training PyTorch models with differential privacy. It supports training with minimal code changes required on the client, has little impact on training performance, and allows the client to online track the privacy budget expended at any given moment. Vectorized per-sample gradient computation that is 10x faster than micro batching. Supports most types of PyTorch models and can be used with minimal modification to the original neural network. Open source,...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 4
    Flax

    Flax

    Flax is a neural network library for JAX

    Flax is a flexible neural-network library for JAX that embraces functional programming while offering ergonomic module abstractions. Its design separates pure computation from state by threading parameter collections and RNGs explicitly, enabling reproducibility, transformation, and easy experimentation with JAX transforms like jit, pmap, and vmap. Modules define parameterized computations, but initialization and application remain side-effect free, which pairs naturally with JAX’s staging...
    Downloads: 1 This Week
    Last Update:
    See Project
  • Subcontractor Construction Management Software Icon
    Subcontractor Construction Management Software

    Bidtracer has been built specifically for the MEP/BAC industry for both construction and service side

    Bidtracer has been built specifically for the MEP/BAC industry for both construction and service side including but not limited to CRM, Bid Management, Invitation to Bid, BAC Estimating, BAC Engineering, Project Management, Service Agreement, Service Work Orders, Service Repair, Service Projects all built natively in the cloud. Estimating/Engineering are connected with live pricing to many manufacturers such as JCI, Distech Controls, ABB, Carrier, ALC and many peripheral distributors such as Kele, Alps, Belimo, Siral, Bray. If we don’t have it already, we will import it as many times throughout the year. Whether you're 2 users or 1000s our system works for all levels of business and all types of users: estimators, engineers, PMs, sales, executive, and field workers with built in rich reporting, customizable reporting, charts and graphs to help companies analyze their data in real time.
    Learn More
  • 5
    Haiku

    Haiku

    JAX-based neural network library

    Haiku is a library built on top of JAX designed to provide simple, composable abstractions for machine learning research. Haiku is a simple neural network library for JAX that enables users to use familiar object-oriented programming models while allowing full access to JAX’s pure function transformations. Haiku is designed to make the common things we do such as managing model parameters and other model state simpler and similar in spirit to the Sonnet library that has been widely used...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 6
    Penzai

    Penzai

    A JAX research toolkit to build, edit, & visualize neural networks

    Penzai, developed by Google DeepMind, is a JAX-based library for representing, visualizing, and manipulating neural network models as functional pytree data structures. It is designed to make machine learning research more interpretable and interactive, particularly for tasks like model surgery, ablation studies, architecture debugging, and interpretability research. Unlike conventional neural network libraries, Penzai exposes the full internal structure of models, enabling fine-grained...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 7
    Sonnet

    Sonnet

    TensorFlow-based neural network library

    Sonnet is a neural network library built on top of TensorFlow designed to provide simple, composable abstractions for machine learning research. Sonnet can be used to build neural networks for various purposes, including different types of learning. Sonnet’s programming model revolves around a single concept: modules. These modules can hold references to parameters, other modules and methods that apply some function on the user input. There are a number of predefined modules that already...
    Downloads: 6 This Week
    Last Update:
    See Project
  • 8
    MMDeploy

    MMDeploy

    OpenMMLab Model Deployment Framework

    MMDeploy is an open-source deep learning model deployment toolset. It is a part of the OpenMMLab project. Models can be exported and run in several backends, and more will be compatible. All kinds of modules in the SDK can be extended, such as Transform for image processing, Net for Neural Network inference, Module for postprocessing and so on. Install and build your target backend. ONNX Runtime is a cross-platform inference and training accelerator compatible with many popular ML/DNN...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 9
    Neural Tangents

    Neural Tangents

    Fast and Easy Infinite Neural Networks in Python

    Neural Tangents is a high-level neural network API for specifying complex, hierarchical models at both finite and infinite width, built in Python on top of JAX and XLA. It lets researchers define architectures from familiar building blocks—convolutions, pooling, residual connections, and nonlinearities—and obtain not only the finite network but also the corresponding Gaussian Process (GP) kernel of its infinite-width limit. With a single specification, you can compute NNGP and NTK kernels,...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Monitoring, Securing, Optimizing 3rd party scripts Icon
    Monitoring, Securing, Optimizing 3rd party scripts

    For developers looking for a solution to monitor, script, and optimize 3rd party scripts

    c/side is crawling many sites to get ahead of new attacks. c/side is the only fully autonomous detection tool for assessing 3rd party scripts. We do not rely purely on threat feed intel or easy to circumvent detections. We also use historical context and AI to review the payload and behavior of scripts.
    Learn More
  • 10
    Alpa

    Alpa

    Training and serving large-scale neural networks

    Alpa is a system for training and serving large-scale neural networks. Scaling neural networks to hundreds of billions of parameters has enabled dramatic breakthroughs such as GPT-3, but training and serving these large-scale neural networks require complicated distributed system techniques. Alpa aims to automate large-scale distributed training and serving with just a few lines of code.
    Downloads: 17 This Week
    Last Update:
    See Project
  • 11
    Jraph

    Jraph

    A Graph Neural Network Library in Jax

    Jraph (pronounced “giraffe”) is a lightweight JAX library developed by Google DeepMind for building and experimenting with graph neural networks (GNNs). It provides an efficient and flexible framework for representing, manipulating, and training models on graph-structured data. The core of Jraph is the GraphsTuple data structure, which enables users to define graphs with arbitrary node, edge, and global attributes, and to batch variable-sized graphs efficiently for JAX’s just-in-time...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 12
    TensorNetwork

    TensorNetwork

    A library for easy and efficient manipulation of tensor networks

    TensorNetwork is a high-level library for building and contracting tensor networks—graphical factorizations of large tensors that underpin many algorithms in physics and machine learning. It abstracts networks as nodes and edges, then compiles efficient contraction orders across multiple numeric backends so users can focus on model structure rather than index bookkeeping. Common network families (MPS/TT, PEPS, MERA, tree networks) are expressed with concise APIs that encourage...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 13
    Differentiable Neural Computer

    Differentiable Neural Computer

    A TensorFlow implementation of the Differentiable Neural Computer

    The Differentiable Neural Computer (DNC), developed by Google DeepMind, is a neural network architecture augmented with dynamic external memory, enabling it to learn algorithms and solve complex reasoning tasks. Published in Nature in 2016 under the paper “Hybrid computing using a neural network with dynamic external memory,” the DNC combines the pattern recognition power of neural networks with a memory module that can be written to and read from in a differentiable way. This allows the...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 14
    Nerfies

    Nerfies

    This is the code for Deformable Neural Radiance Fields

    Nerfies demonstrates deformation-aware neural radiance fields that reconstruct and render dynamic, real-world scenes from casual video. Instead of assuming a static world, the method learns a canonical space plus a deformation field that maps changing poses or expressions back to that space during training. This lets the system generate photorealistic novel views of nonrigid subjects—faces, bodies, cloth—while preserving fine detail and consistent lighting. The training pipeline handles...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 15
    NLP Architect

    NLP Architect

    A model library for exploring state-of-the-art deep learning

    NLP Architect is an open-source Python library for exploring state-of-the-art deep learning topologies and techniques for optimizing Natural Language Processing and Natural Language Understanding neural networks. The library includes our past and ongoing NLP research and development efforts as part of Intel AI Lab. NLP Architect is designed to be flexible for adding new models, neural network components, data handling methods, and for easy training and running models. NLP Architect is a...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 16
    fastNLP

    fastNLP

    fastNLP: A Modularized and Extensible NLP Framework

    fastNLP is a lightweight framework for natural language processing (NLP), the goal is to quickly implement NLP tasks and build complex models. A unified Tabular data container simplifies the data preprocessing process. Built-in Loader and Pipe for multiple datasets, eliminating the need for preprocessing code. Various convenient NLP tools, such as Embedding loading (including ELMo and BERT), intermediate data cache, etc.. Provide a variety of neural network components and recurrence models...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 17
    AdaNet

    AdaNet

    Fast and flexible AutoML with learning guarantees

    AdaNet is a TensorFlow framework for fast and flexible AutoML with learning guarantees. AdaNet is a lightweight TensorFlow-based framework for automatically learning high-quality models with minimal expert intervention. AdaNet builds on recent AutoML efforts to be fast and flexible while providing learning guarantees. Importantly, AdaNet provides a general framework for not only learning a neural network architecture but also for learning to the ensemble to obtain even better models. At each...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 18
    I3D models trained on Kinetics

    I3D models trained on Kinetics

    Convolutional neural network model for video classification

    Kinetics-I3D, developed by Google DeepMind, provides trained models and implementation code for the Inflated 3D ConvNet (I3D) architecture introduced in the paper “Quo Vadis, Action Recognition? A New Model and the Kinetics Dataset” (CVPR 2017). The I3D model extends the 2D convolutional structure of Inception-v1 into 3D, allowing it to capture spatial and temporal information from videos for action recognition. This repository includes pretrained I3D models on the Kinetics dataset, with...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 19
    Compare GAN

    Compare GAN

    Compare GAN code

    compare_gan is a research codebase that standardizes how Generative Adversarial Networks are trained and evaluated so results are comparable across papers and datasets. It offers reference implementations for popular GAN architectures and losses, plus a consistent training harness to remove confounding differences in optimization or preprocessing. The library’s evaluation suite includes widely used metrics and diagnostics that quantify sample quality, diversity, and mode coverage. With...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 20
    PrettyTensor

    PrettyTensor

    Pretty Tensor: Fluent Networks in TensorFlow

    Pretty Tensor is a high-level API built on top of TensorFlow that simplifies the process of creating and managing deep learning models. It wraps TensorFlow tensors in a chainable object syntax, allowing developers to build multi-layer neural networks with concise and readable code. Pretty Tensor preserves full compatibility with TensorFlow’s core functionality while providing syntactic sugar for defining complex architectures such as convolutional and recurrent networks. The library’s design...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • Next